
Parallel Crawling for Online Social Networks
Duen Horng Chau, Shashank Pandit, Samuel Wang, Christos Faloutsos

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{dchau, shashank, samuelwang, christos}@cs.cmu.edu

ABSTRACT
Given a huge online social network, how do we retrieve

information from it through crawling? Even better, how do we

improve the crawling performance by using parallel crawlers that

work independently? In this paper, we present the framework of

parallel crawlers for online social networks, utilizing a centralized

queue. To show how this works in practice, we describe our

implementation of the crawlers for an online auction website. The

crawlers work independently, therefore the failing of one crawler

does not affect the others at all. The framework ensures that no

redundant crawling would occur. Using the crawlers that we built,

we visited a total of approximately 11 million auction users, about

66,000 of which were completely crawled.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architecture; H.2 [Information

Systems]: Information Storage and Retrieval

General Terms
Performance

Keywords
Web Crawler, Web Spider, Parallelization, Online Social

Networks

1. INTRODUCTION
As the Web grows, parallel crawlers are needed to meet the need

of downloading and storing the massive amount of Web data.

Many search engines have implemented their own versions of

parallel crawlers to index the Web. However, scientific research

on the topic of parallel crawler remains relatively little.

Cho and Garcia-Molina [1] had proposed architectures for parallel

crawlers for the Web, together with some metrics for evaluating

them. Specifically, they listed three general architectures to avoid

redundant crawling among parallel crawlers: the independent

architecture where no coordination exists among crawlers, the

dynamic assignment architecture where there is a central

coordinator, and the static assignment architecture where the Web

is partitioned and assigned to each crawler, and the crawlers

coordinate among themselves (without a central coordinator) once

crawling has started. The authors had left dynamic assignment as

future work – which is the architecture that we will be using in

this paper, and we will discuss why this is particularly suitable for

crawling social networks.

An online social network consists of individuals who are linked to

the others in the same network. Some well-known examples of

online social network include LinkedIn1 which helps people build

professional connections, and Friendster2 which helps build

personal relationships – for making friends, dating, etc. Online

auction sites, are in fact, also social networks, where the auction

users take part in buying and selling activities. Indeed, eBay3, the

largest auction site in the world, having more than 212 million

registered users, might also be the largest online social network.

Online social networks are part of the Web, where a lot of

interesting phenomena take place; and many of them are worth

studying, or paying attention to. For example, on an online

auction, we may want to find out the patterns of fraudulent or

suspicious transactions among users.

But before such analysis can be done, we need to gather the data

that describes the social networks. These networks are often huge,

therefore crawling these networks could be both challenging and

interesting. However, there has been little documented work on

the crawling of these data. Heer and Boyd [2] mentioned their use

of a crawler to gather Friendster data for their Vizster social

1 http://www.linkedin.com

2 http://www.friendster.com

3 http://www.ebay.com

Copyright is held by the author/owner(s).

WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

Figure 1. Overview of the parallel crawler. Also shown

is the application server which typically exists to process

user queries into the crawled data.

WWW 2007 / Poster Paper Topic: Social Networks

1283

network visualization system, but they did not go into the details

of the design and implementation of the crawler.

2. CRAWLING SOCIAL NETWORKS
Online social networks are part of the Web, but their data

representations are very different from general web pages. The

web pages that describe an individual in an online social network

are typically well-structured, as they are usually automatically

generated, unlike general web pages which could be authored by

any person. Therefore, we can be very certain about what pieces

of data we can obtain after crawling a particular individual’s web

pages. Here we use eBay as an example social network. Figure 2

shows the profile web page of a user on eBay. From the page, we

can obtain the user’s ID, date of registration, location and other

personal details. Besides this local information, there are usually

explicit links that we can use to trace the user’s connections to the

others. Referring back to Figure 2, the list of feedback received by

the user is shown, including the IDs of the users who left the

feedback, which are hyperlinked to those users’ profile pages.

Thus, by crawling these hyperlinks, we can construct the graph of

connections between all the users in the social network.

We crawled these user data in a breadth-first fashion. We used a

queue data structure to store the list of pending users which had

been seen but not crawled. Initially, a seed set of users was

inserted into the queue. Then at each step, the first entry of the

queue is popped, all feedbacks for that user were crawled, and

every user who had left a feedback (but was not yet seen) was

enqueued. Once all of the user’s feedbacks were crawled, the user

was marked as visited, and stored in a separate queue.

2.1 Parallelizing via Centralized Queue
We enhanced the naive breadth-first strategy to make it

parallelizable by migrating the queue to a master machine, while

the crawling of web pages is distributed across several agent

machines which could be distributed. Each agent requests the

master for the next available user to crawl, and returns the

crawled feedback data for this user to the master. The master

maintains global consistency of the queue, and ensures that a user

is crawled only once. To ensure consistency and scalability of the

queue data structure, we decided to use a MySQL database as the

platform for the master. This allows us to add new agents without

suffering any downtime or configuration issues, while maintaining

a proportional increase in performance. Further, each agent itself

can open arbitrary number of HTTP connections, and run several

different crawler threads. Thus, the crawler architecture allows for

two tiers of parallelism – the master controls multiple agents in

parallel, while each agent itself uses multiple threads for crawling.

Importantly, the failing of one crawler does not affect the

operation of the others. Sometimes, we may want to control which

user should be crawled next, such as when we want to obtain the

most updated information of a user. To make this happen, we can

simply insert the user’s ID to the front of the centralized queue so

that the next available crawler will process the user immediately.

We implemented our eBay crawler in Java, which amounted to

about 1000 lines of code. The master stored all of the data in a

MySQL 5.0.24 database with the following schema:

User (uid, username, date_joined, location,
feedback_score, is_registered_user,
is_crawled)

Feedback (feedback_id, user_from, user_to, item,
buyer, score, time)

Queue (uid, time_added_to_queue)

We started the crawling on October 10, and stopped it on

November 2. In this period, we visited a total of 11,716,588 users,

66,130 of which were completely crawled. The bottleneck in

limiting the download rate was at the speed of the Internet

connection, but not at the centralized queue.

3. CONCLUSION
We presented the framework and implementation of parallel

crawlers for crawling online social networks. Making use of the

fact that social network data are well-structured, and that each

individual is identified by a unique identifier, a centralized queue

implemented as a database table is conveniently used to

coordinate the operation of all the crawlers to prevent redundant

crawling. This offers two tiers of parallelism, allowing multiple

crawlers to be run on each of the multiple agents, where the

crawlers are not affected by any potential failing of the other

crawlers. Furthermore, manual override in prioritizing the

crawling sequences is possible with simple insertion of a user’s

identifier to the front of the queue.

4. ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grants No. IIS-0326322 IIS-0534205.

This work is also supported in part by the Pennsylvania

Infrastructure Technology Alliance (PITA), an IBM Faculty

Award, a Yahoo Research Alliance Gift, with additional funding

from Intel, NTT and Hewlett-Packard. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views

of the National Science Foundation, or other funding parties.

5. REFERENCES
[1] Cho, J., and Garcia-Molina, H. Parallel crawlers. In

Proceedings of the Eleventh International World Wide Web

Conference, 2002.

[2] Heer, J., and Boyd, D. Vizster: Visualizing Online Social
Networks. IEEE Symposium on Information Visualization

(InfoVis), 2005

Figure 2. A sample eBay user profile page, listing the

recent feedback received by the user. User IDs have

been edited to protect privacy.

WWW 2007 / Poster Paper Topic: Social Networks

1284

