
GigaHash: Scalable Minimal Perfect Hashing  
for Billions of URLs 

Kumar Chellapilla 
Microsoft Live Labs 
One Microsoft Way 

Redmond, WA 98052 USA 

kumarc@microsoft.com 

Anton Mityagin 
Microsoft Live Labs 
One Microsoft Way 

Redmond, WA 98052 USA 

mityagin@microsoft.com 

Denis Charles 
Microsoft Live Labs 
One Microsoft Way 

Redmond, WA 98052 USA 

cdx@microsoft.com

 

ABSTRACT 

A minimal perfect function maps a static set of 𝑛 keys on to the 

range of integers {0,1,2, … , 𝑛 − 1}. We present a scalable high 

performance algorithm based on random graphs for constructing 

minimal perfect hash functions (MPHFs). For a set of 𝑛 keys, our 

algorithm outputs a description of  ℎ in expected time 𝑂(𝑛). The 

evaluation of ℎ(𝑥) requires three memory accesses for any key 𝑥 

and the description of ℎ takes up 0.89𝑛 bytes (7.13𝑛 bits). This is 

the best (most space efficient) known result to date. Using a 

simple heuristic and Huffman coding, the space requirement is 

further reduced to 0.79𝑛 bytes (6.86𝑛 bits). We present a high 

performance architecture that is easy to parallelize and scales well 

to very large data sets encountered in internet search applications. 

Experimental results on a one billion URL dataset obtained from 

Live Search crawl data, show that the proposed algorithm (a) 

finds an MPHF for one billion URLs in less than 4 minutes, and 

(b) requires only 6.86 bits/key for the description of ℎ. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval; G.2.2 [Discrete Mathematics]: Graph Theory— 

Graph algorithms 

General Terms 

Algorithms, Experimentation, Performance. 

Keywords 

Minimal perfect hashing, perfect hash function, Web search 

engine, space efficient hash table 

1. INTRODUCTION 
A hash function maps elements from an input space to a 

finite range of integers. Typically, the range of the hash function 

is much smaller than the input space. Thus a hash function is not 

injective. However, for a subset of the input space that is smaller 

than the range, the hash function has few collisions. In particular, 

if a hash function is drawn from a 2-universal family of hash 

functions that map to a set of size 𝑚, then with high probability a 

hash function will be collision free if it is used to map ≤   𝑚 keys 

(see [1]). 

A perfect hash function maps a static set of  𝑛 keys into a set 

of 𝑚 integer numbers without collisions, where 𝑚 ≥ 𝑛. If 𝑚 = 𝑛, 

the hash function is called minimal. Usually, the range of the 

minimal perfect hash function (MPHF) is the contiguous set of 

integers {0,1,2, … , 𝑛 − 1}. One point  to note is that  while general  

hash functions deal with a dynamic set of keys, perfect hash 

functions always work with a static set of keys. 

MPHFs have many applications (information retrieval 

systems, database systems, hypertext, hypermedia, language 

translation systems, electronic commerce systems, compilers, 

operating systems, among others) but we focus on their use in web 

search engines. Large scale web applications typically work with 

several billion URLs. For example, commercial search crawlers1 

encounter several tens of billions of URLs during crawling and 

index them for search and retrieval. However, URLs are of 

variable length and not suitable for efficient processing. So, rather 

than process URLs directly, they are first hashed to a fixed size 

data structure. All subsequent processing deals with the hashes. 

The hashing scheme has to be carefully designed to avoid 

collisions. Given 1 billion URLs, one can uniquely represent each 

URL using a 30-bit number (230  1 billion). A simple universal 

hash would require twice as many bits to have a low probability of 

collision (see birthday paradox problem [1]), which puts the 

required number of bits per URL at 60. A 60- or 64-bit hash is a 

perfect hash with high probability. Some search related 

applications require the generated hashes to be contiguous i.e., the 

perfect hash function also needs to be minimal. For example, 

computing the PageRank for a web graph requires a mapping 

from URL space to a contiguous sequence of integers that 

represent rows and columns of the web graph adjacency matrix. 

In this paper, we propose using MPHFs for very large static 

web datasets such as a static set of all URLs seen by crawler and 

indexed by a search engine. The evaluation of ℎ(𝑥) requires three 

memory accesses for any key 𝑥 and the description of ℎ takes less 

than one byte per key. 

2. MINIMAL HASHING ALGORITHM 

2.1 Notation and Terminology 
We use the following notation and terminology in this paper:  

 𝑈: universe of keys of size  𝑈 = 𝑢. 

 𝑆: the static set of keys to be hashed. 𝑆 ⊂ 𝑈. 

 𝑛: the number of static keys  𝑆 = 𝑛 ≪ 𝑢. 

 ℎ: 𝑈 → 𝑀  is a hash function that maps keys from the 

universe 𝑈  into a given range of integers  

𝑀 = {0,1,2, … , 𝑚 − 1} 

 ℎ is a perfect hash function if it is one-to-one on 𝑆, i.e., if 

h(k1)  h(k2) for all k1  k2, k1, k2  S. h is a minimal perfect 

hash function if it is one-to-one on S and n = m. 

                                                                 

1 such as GoogleBot (Google), Yahoo! Slurp (Yahoo), MSNBot 

(Live), Ask.com/Teoma 

Copyright is held by the author/owner(s). 
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada. 

ACM 978-1-59593-654-7/07/0005. 

 

 

WWW 2007 / Poster Paper Topic: Search

1165



2.2 The Minimal Hashing Scheme 
Perfect hashing and minimal perfect hashing have enjoyed a 

rich history of development ever since the early days of computer 

science when hashing was introduced. However, our construction 

improves upon recent work of Czech et al. [2] and Botelho et al. 

[3]. These MPH algorithms are based on random graphs and have 

the following stages:  

 Mapping: transform the key set, S, from the original universe 

U  to a new universe U .  

 Ordering: place the keys in a sequence that determines the 

order in which hash values are assigned to keys. 

 Searching: assign hash values to the keys in order. 

The universe is mapped to the edges of a random acyclic 

graph 𝐺 = (𝑉, 𝐸)  with  𝐸 = |𝑆| : key 𝑘  is mapped to edge 

𝑒 = (ℎ1 𝑘 , ℎ2 𝑘 ) , where ℎ1 , ℎ2: 𝑈 → 𝑉  are 2-universal hash 

functions. Next, they pick an arbitrary isomorphism 𝑖 ∶ 𝐸 →
{0, … , 𝑛 − 1}  and find a function 𝑔: 𝑉 → {0, … , 𝑛 − 1} such that 

𝑖 𝑒 =  𝑔 𝑣1 + 𝑔 𝑣2   mod 𝑛. . Then the MPH is simply 

𝐻 𝑘 ≔  𝑔 ℎ1 𝑘  + 𝑔 ℎ2 𝑘    mod 𝑛. Czech et al. [2], showed 

that if   𝑉 = 𝑐|𝐸| with 𝑐 ≥ 2.09 then 𝐺  obtained in this way is 

acyclic with sufficiently high probability. Since the graph is 

acyclic the set of equations for the 𝑔 values can be solved very 

easily. The description of the hash function requires the table of 𝑔 

values to be stored and is proportional to 𝑐 . The algorithm of 

Botelho et al. sets 𝑐 to be < 2.09, and consequently the graph 𝐺 is 

cyclic. They show how one can order the assignment of the hash 

values to the cyclic portion, the so-called 2-core, of the graph to 

be able to construct the MPH (see [3] for the details). Their 

method works as long as the 2-core is ≤
1

2
|𝐸|. The size of the 2-

core is known to be ≤
1

2
|𝐸|as long as 𝑐 ≥ 1.15 thus leading to 

improvements. 

Our algorithm begins with the observation that the 

distribution the 𝑔  values produced is skewed. In particular, we 

analyze the probability that 𝑔 𝑣 =  0. We use this to compress 

the storage requirements of the table of 𝑔  values further. 

Theoretically, we prove that the compression allows us to reach a 

lower effective value of 𝑐 ≥ 0.94 , which is 23% better. 

Empirically, on a one billion URL dataset, we show that 𝑐 can be 

taken as low as 0.81, an improvement of 42% over 𝑐 = 1.15. 

2.3 Key Improvements 
The following proposition allows us to analyze the 

proportion of vertices with 𝑔 𝑣 = 0. 

Proposition 1. The expected proportion of vertices 𝑣 that have 

𝑔(𝑣) = 0  owing to the fact that they belong to a connected 

components of size ≤ 2 in 𝐺 is  

𝑝0 =  1 −
2

𝑚
 
𝑛

+
𝑛

𝑚
 1 −

2

𝑚
 

2(𝑛−1)

 

One can use an 𝑛 bit-vector 𝐵 to identify unused/zero 𝑔(𝑣) values. 

Using a bit-vector the space required for the MPH drops from 

𝑐𝑛 log 𝑛  bits to 𝑐 1 − 𝑝0 𝑛 log2 𝑛 + 𝑝0𝑛  bits. For 𝑛 = 109  and 

𝑚 ≈ 1.15𝑛 , we have 𝑝0 ≈ 0.211, thus the effective 𝑐 = 0.94. 

Empirically, one can reduce 𝑚  down to 0 . 93𝑛 , wherein 𝑝0 ≈
0.12 and the effective 𝑐 drops to 0.81. One can also exploit the 

non-uniform distribution of 𝑔 values using Huffman coding.  

2.4 Scalable High Performance Architecture 

 
Figure 1. Architecture of our minimal perfect hash function 

Figure 1 shows the high level organization of our minimal 

perfect hash (MPH) function for billions of URLs. Generation of a 

MPHF consists of the following steps: 

1. Read the input data from a hard drive or network. 

2. Convert URLs to fingerprint strings and distribute them into 

buckets. Text data is parsed and segmented into individual 

URLs. For each URL we compute 64-bit fingerprints using 

Jenkin’s Hash. Based on the fingerprint, we determine a 

bucket ID and place the URL in that bucket. Bucket sizes are 

chosen so that they contain 160-180 URLs on average. 

3. Create minimal perfect hash function (over the fingerprints) 

for each of the buckets.  For each of the buckets we construct 

a minimal perfect hash function as described in Section 2.2 

and 2.3. Each of the buckets is processed in parallel. 

4. The MPHs for the buckets are ―stitched‖ into a global MPH 

using a table of offsets for each bucket.  

2.5 Results 
In the segmentation step, one billion URLs were segmented into 

6.25 million buckets. Each of the buckets was independently 

processed to obtain local MPHFs. Table 1 shows the space gains 

using a bit-vector and Hufman coding of the 𝑔 table. The time to 

create the table was 3.9 min on an AMD Opteron 285 (dual 

processor) 64-bit machine with 16GB RAM. Hash lookups 

required roughly 0.025 × 10−6sec, completing 1 billion lookups 

in 23.7 seconds.  

Table 1. Space gains using zero/unused 𝒈[. ] bitvector and 

Huffman coding for hashing 1 billion URLs. 

3. REFERENCES 
[1] D. E. Knuth. The Art of Computer Programming: Sorting 

and Searching, volume 3. Addison-Wesley, 1973. 

[2] Z. Czech, G. Havas, and B. Majewski. An optimal algorithm 

for generating minimal perfect hash functions. Information 

Processing Letters, 43(5):257–264, 1992. 

[3] F. C. Botelho, Y. Kohayakawa, and N. Ziviani. A Practical 

Minimal Perfect Hashing Method. 4th Intl. Workshop on 

Efficient and Experimental Algorithms (WEA05), Springer-

Verlag, vol. 3505, 488-500, 2005. 

Billions
of Urls

(N)

Bucket Urls
b = h0(url) % B

B is chosen such that 
number of entries per 
bucket is in {160-180}

Bucket-1 MPH-1

Bucket-2 MPH-2

Bucket-3 MPH-3

Bucket-4 MPH-4

Bucket-5 MPH-5

Bucket-B MPH-B

C 
MPHF  

size (GB) 

zero/ 

unused 

𝒈[. ] values  

Huffman 

Coded 

Size (GB) 

Space 

gain 

(%) 

Bits per 

URL 

Bits per 

URL 

(Huff) 

1.15 1.267 22.99 % 1.011 20.12 8.10 8.09 

1.00 1.114 18.52 % 0.929 14.88 7.59 7.43 

0.95 1.067 16.26 % 0.899 13.43 7.39 7.19 

0.93 1.048 15.35 % 0.885 12.76 7.31 7.08 

0.90 1.017 14.02 % 0.862 11.92 7.17 6.90 

0.89 1.008 13.54 % 0.858 11.60 7.13 6.86 

WWW 2007 / Poster Paper Topic: Search

1166


