
Providing Session Management as Core Business Service
Ismail Ari, Jun Li, Riddhiman Ghosh, Mohamed Dekhil

Hewlett-Packard Laboratories, 1501 Page Mill Rd. Palo Alto, CA, 94304, USA

ismail.ari@hp.com, jun.li@hp.com, riddhiman.ghosh@hp.com, mohamed.dekhil@hp.com

ABSTRACT

It is extremely hard for a global organization with services over

multiple channels to capture a consistent and unified view of its

data, services, and interactions. While SOA and web services are

addressing integration and interoperability problems, it is painful

for an operational organization with legacy systems to quickly

switch to service-based methods. We need methods to combine

advantages of traditional (i.e. web, desktop, or mobile) application

development environments and service-based deployments.

In this paper, we focus on the design and implementation of

session management as a core service to support business

processes and go beyond application-specific sessions and web

sessions. We develop local session components for different

platforms and complement them with a remote “session service”

that is independent of applications and platforms. We aim to close

the gap between the two worlds by combining their performance,

availability and interoperability advantages.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable software–reuse

models. H.3.5 [Information Storage and Retrieval]: Online

information services– web-based services.

General Terms

Design, Management, Performance, Reliability.

Keywords

Session service, data serialization, multi-channel integration.

1. INTRODUCTION
Today, many complex tasks, projects or business workflows are

completed using information from multiple sources and in a

collaborative fashion. For example, consumers make their buying

decisions using multiple channels such as web sites, printed-ads,

mobile devices, store kiosks and their decisions are affected by

family members, friends, and online reviews. It is extremely

challenging for today’s global enterprises with disparate silos of

Information Technology (IT) applications to give their customers

a consistent view of offered services and get a unified view of

business state while customers are interacting with their systems.

SOA paradigm and Web Services (WS-*) efforts are addressing

these business and IT integration problems. Therefore, many

organizations are already along the way for SOA migration of

their IT infrastructures. However, several real-world challenges

slow down the SOA adoption. These challenges include

dependence of business continuity on legacy systems,

disconnected computing needs, pains of converting existing

functions into web services, the lack of common schemas and rich

set of reusable enterprise services, and finally the lack of trust to

“service providers” for guaranteed availability, performance,

privacy or security of services and at “reasonable” prices. Our

design methodology addresses some of these concerns.

In many desktop applications a session module is embedded in the

application, but it cannot be reused with other applications. HTTP

sessions have enabled different web browser based applications to

track state of multiple user sessions concurrently and solved many

E-commerce problems (as HTTP protocol is stateless). Yet, HTTP

sessions are not available for PC or mobile desktop applications.

Furthermore, with web sessions customers and business owners

have no control over how, when, or where a session’s state will be

stored and then reloaded. Our session service allows such choices

and enables multi-channel availability. Recently, WS-Resource

Framework (WSRF) [1,2] and WS-Context [4,3] specification

were proposed to standardize representation of service state.

While these proposals enable sharing of state among web services,

we believe that legacy, performance, trust, etc. issues mentioned

above will limit adoption of solely web-based state management

approaches for many business processes. Our approach uses local

components matched by a remote session service. The remote

component is currently implemented using web services and it can

be rendered to comply with WSRF in the future.

2. SESSION SERVICE DESIGN
Figure 1 shows the high-level design of our session service and

the motivating retail business use cases. The local session

managers coexist with traditional application development

environments such as desktop, web, or mobile platforms to

provide them with features such as serialization of session state,

fast local storage, session timing, handling of session events, and

communication with the remote session service. The remote

Copyright is held by the author/owner(s).

WWW 2007, May 8--12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

Retail

Store

Kiosk

Local

Session

Manager

Retail

Store

Kiosk

Local

Session

Manager

Local

Session

Manager

Session

Service

Retailer’s Backend or

a Utility Data Center

Web-to-Store

Moving

Kiosk-to-Kiosk

Web Clients

Customer

Retailer’s

Web Server

Web Services
Mobile

device

Figure 1. Session manager design and retail use cases.

WWW 2007 / Poster Paper Topic: Services

1263

component resides at the backend and provides interoperability,

reliable long-term storage of enterprise-scale data, multi-channel

availability, and data mining services. Customers can seamlessly

move between channels to complete their tasks.

Users with privacy concerns can use their personal mobile devices

to carry state. By separating the design concerns, we can combine

the ease of integration and performance advantages of the local

component with the availability, reliability of a service-based

remote component at the backend. This way we aim to close the

gap between traditional and service-based deployments.

2.1 Design Details
A single instance of a local SessionManager class is created

when a local application is started or the web server receives its

first request. The session manager checks whether a previous

session exists for the given userid or sessionid. If so, it loads this

session either from a local resource (file, table) or imports it from

the remote service. If no previous session exists, a new session is

created. SessionState classes serve as containers for

application states (e.g. Session[“ShoppingCart”]=cart)
similar to web sessions, but in our case a session can be saved and

loaded at any channel. They know where, how and when to store

data. For example, the state can be stored in memory temporarily,

in a file/database table, or in web server’s session context (where).

XML, binary, or other data serialization types can be used (how).

Finally, state synchronization with remote session service can be

immediate, deferred or never based on the policy (when). The

remote session service has two basic methods- ExportSession

and ImportSession- (Fig. 2) which can be used by local session

managers and other application-specific web services to persist

session state and load it back, respectively.

2.2 Use Cases for Session Service
Session manager deals with different dimensions of user sessions.

The first is multi-channel application continuity. Any serializable

application state can be saved and reloaded at the same or

different channels. For retail-related business applications (e.g. in

Fig.2) state may include shopping carts, shopping lists, recently

viewed items, purchase history, privacy/security settings, and UI

customizations. Another aspect of session management is the

timing of sessions, detecting inactivity, pausing and resuming a

session (e.g. during a training). Group management is another

aspect. The current state of a session can be shared among users

as a whole or in finer-granularity per application state (e.g. just

share my baby registry). Both application designers and customers

can have control over the policies such as what is stored for how

long and who gets to see what (i.e. access and authorization

control). A shopping session can be started by one person (wife)

and continued by another (husband) at another channel. It can be

transferred from one role (clerk) to another (manager).

Session manager supports core session/state-related features,

which can be used by applications (e.g. Business Intelligence) and

other core services (e.g. authentication & session tokens). The

collected state can be data-mined either offline or in real-time to

provide personalized services. Using session data we can report

channel usage, conversion rates, channel spending, popular items,

etc. which lead to characterization of multi-channel shopping

behavior. Thus, we introduce a collection of new metrics, which

are not widely available, but desperately needed by businesses

today. Existing session managers do not support these features

lacking the ability to become business-integrated.

3. PROOF OF CONCEPT
The session manager is implemented using .NET and its operation

is demonstrated in a retail setting including an in-store kiosk and a

mobile/desktop retail program to constitute different shopping

channels as shown in Figure 2. We use the retail kiosk and then

save the shopping cart and viewed coupons into session service.

Next, we access and update the carts using the mobile/desktop

application as a proof of concept and interoperability.

Web and Kiosk

Applications

Session

Service

Mobile and Desktop

Applications

4. CONCLUSIONS AND FUTURE WORK
We described the design of session management that supports

business processes with both disconnected and networked parts.

We compared our work at a high-level to some existing solutions

and showed a proof of concept implementation. We demonstrated

a multi-channel integration use case for a retail application, which

is known to affect customer loyalty. We are currently making

performance evaluations, integrating session with authentication-

authorization services, addressing mobility issues, and adding

Join/LeaveSession functionality for collaborative applications.

5. REFERENCES
[1] Czajkowski, K., et al. 2004. The WS-Resource Framework.

http://www.globus.org/wsrf/

[2] Geoffrey Fox, "Grids of Grids of Simple Services,"

Computing in Science and Engineering, vol. 06, no. 4, pp.

84-87, Jul/Aug, 2004.

[3] Hildebrand, H., Karmarkar, A., Little, M., Pavlik, G.:

Session Modeling for Web Services. In IEEE ECOWS 2005.

[4] Little, M., Newcomer, E. and Pavlik, G. Web Services

Context Specification (WS-Context). OASIS Committee

Draft v.0.8. 2004.

Figure 2. Screenshots of retail applications that use our

session service implementation.

WWW 2007 / Poster Paper Topic: Services

1264

