
Toward Expressive Syndication on the Web

Christian Halaschek-Wiener
Department of Computer Science

University of Maryland
College Park, Maryland

halasche@cs.umd.edu

James Hendler
Department of Computer Science

University of Maryland
College Park, Maryland

hendler@cs.umd.edu

ABSTRACT
Syndication systems on the Web have attracted vast amounts of
attention in recent years. As technologies have emerged and ma-
tured, there has been a transition to more expressive syndication
approaches; that is, subscribers and publishers are provided with
more expressive means of describing their interests and published
content, enabling more accurate information filtering. In this pa-
per, we formalize a syndication architecture that utilizes expressive
Web ontologies and logic-based reasoning for selective content dis-
semination. This provides finer grained control for filtering and au-
tomated reasoning for discovering implicit subscription matches,
both of which are not achievable in less expressive approaches. We
then address one of the main limitations with such a syndication
approach, namely matching newly published information with sub-
scription requests in an efficient and practical manner. To this end,
we investigate continuous query answering for a large subset of the
Web Ontology Language (OWL); specifically, we formally define
continuous queries for OWL knowledge bases and present a novel
algorithm for continuous query answering in a large subset of this
language. Lastly, an evaluation of the query approach is shown,
demonstrating its effectiveness for syndication purposes.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formali-
sms and Methods; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval-Information Filtering

General Terms
Algorithms, Design, Performance

Keywords
Syndication, Publish/Subscribe, Description Logics, Continuous
Query Answering

1. INTRODUCTION
Web-based syndication systems have attracted a great amount of

attention in recent years. In typical syndication frameworks, users
register their subscription requests with syndication brokers; sim-
ilarly, content publishers register their feeds with syndication bro-
kers. It is then the broker’s task to match newly published informa-
tion with registered subscriptions. As technologies have emerged

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

and matured, there has been a transition to more expressive syndi-
cation approaches; that is, subscribers and publishers are provided
with more expressive means for describing their interests and pub-
lished content, enabling more accurate dissemination. Through the
years there has been a transition from keyword-based approaches
(e.g., [19]) to attribute-value pairs (e.g., [1]) and more recently to
XML (e.g., [4]). Given the limited knowledge modeling expres-
sivity of XML (and XML Schema), there has been interest in us-
ing RDF for syndication purposes (e.g., [23]). RDF has even been
adopted as the standard representation format of RSS 1.01.

Today’s syndication approaches still provide relatively weak ex-
pressive power from a modeling perspective (i.e., XML and RDF
are inexpressive modeling languages) and provide very little au-
tomated reasoning support. However, if a more expressive ap-
proach with formal semantics can be provided, many benefits can
be achieved; these include a rich semantics-based mechanism for
expressing subscriptions and published content, allowing increased
selectivity and finer grained control for filtering [22]. Additionally,
automated reasoning can be utilized for discovering subscription
matches that cannot be found using traditional syntactic syndica-
tion approaches.

In this work, we consider using the Web Ontology Language
(OWL) for representing published content. As the semantics of
a large subset of OWL is aligned with description logics (DLs),
reasoning techniques for DLs can then be leveraged for matching
content with subscription requests [9, 22, 17]. In such an approach,
the previously mentioned benefits of using a formal representation
language can therefore be achieved. An additional benefit of an
OWL-based syndication approach is its native Web embedding and
power as a data integration language. Further, such an approach
can be seen as a natural extension of existing RSS 1.0 syndication
systems, as OWL can be encoded in RDF.

To demonstrate the increased expressivity of an OWL-based syn-
dication approach, consider the following example related to the
financial domain. Assume that a stock trader is interested in infor-
mation contained in news articles (or collections of articles) that
discuss news about companies that will make their stocks volatile
(i.e., they become risky investments). In particular, assume that
the trader is interested in anyRiskyCompanythat he or she defines
to include companies that had their credit downgraded by either
Moodys or S&P credit agency and exists on some sell ratings list
of a financial institution. Using an XML-based approach, syndi-
cation brokers can provide an XML Schema that contains an el-
ementRiskyCompanyand such companies can be declared to be
this type of element. However, more complex logical definitions
and automatic classification of objects cannot be supported; there-
fore, an XML-based approach cannot accommodate the previous

1RSS 1.0 Specification: http://web.resource.org/rss/1.0/spec

WWW 2007 / Track: Semantic Web Session: Applications

727

example. If we consider an RDF-based approach, then a syndi-
cation broker can model the financial domain using RDF Schema;
therefore, slightly more complex subscription matches can be ob-
tained, as one can logically infer that a company is aRiskyCompany
(e.g., based on subclass relationships). However, in an RDF-based
approach, complex logical definitions, such as the previously men-
tionedRiskyCompany, are not definable. In contrast, in an OWL-
based approach, such expressivity is easily provided. For example,
RiskyCompanyis defined in Table 1 (turtle syntax).

:RiskyCompany a owl:Class;
owl:intersectionOf (

[a owl:Restriction; owl:onProperty :onRecommendation;
owl:someValuesFrom :SellList]

[a owl:Restriction; owl:onProperty :downgradedBy;
owl:someValuesFrom [owl:oneOf (:SandP :Moodys)]]

:Company
) .

:movedToJunk a owl:ObjectProperty;
rdfs:subPropertyOf :downgradedBy .

:onRecommendation a owl:ObjectProperty;
owl:InverseOf :hasRecommendation .

Table 1: Illustration of expressivity in OWL-based syndication.

The definitions that the propertymovedToJunkis a sub-property
of downgradedBy, andonRecommendationis the inverse ofhas-
Recommentation, are included in Table 1 as they are used later in
the paper.

While OWL-based syndication approaches provide increased ex-
pressivity over XML and RDF, previous DL-based syndication ap-
proaches suffer from scalability issues due to the inherent complex-
ity of DL reasoning [22, 17, 9]. This is an issue in domains such
as the syndication of financial news feeds because response times
must be minimal as critical information must be delivered in near
real time (e.g., for stock trading purposes). One of the main lim-
itations in an OWL-based syndication approach is related to DL
reasoning over changing data; this is primarily due to the static
nature of existing DL reasoning techniques. In particular, the ad-
dition of information from newly published documents and data
can be viewed as a change in the underlying knowledge base (KB).
In current DL reasoning algorithms, reasoning on the updated KB
is performed from scratch. The consistency of the KB must be
ensured; queries must be re-evalutated; etc. This negatively im-
pacts the performance results of existing DL-based syndication ap-
proaches, as performance times are in the tens of seconds. An ad-
ditional limitation of OWL-based syndication approaches is related
to the infancy of the underlying architectures investigated to date;
in particular, these architectures have not been investigated in great
depth or fully formalized.

In this paper we address both of the previously discussed short-
comings with OWL-based syndication systems. In particular, we
first formalize a DL-based syndication framework. We then ad-
dress the scalability of DL reasoning for the purpose of syndication.
First, we present a technique for incremental consistency check-
ing for a substantial portion of OWL. Then, we address the issue
of continuous query answering over OWL KBs that are being up-
dated, primarily focusing on reducing the size of the KB that must
be considered as candidate query bindings. This effectively allows
a smaller subset of the KB to be considered for possible subscrip-
tion matches. The techniques we present are applicable to queries
with at least one distinguished variable (i.e., must be bound to a
named individual) and containing only simple roles (i.e., no transi-
tive roles or super-roles of a transitive role). Further, the approach
supports the description logicSHI (a large subset of OWL) with
the restriction the KB unfoldable (i.e., acyclic). Lastly, an evalu-

ation of the incremental reasoning techniques is provided, demon-
strating their effectiveness for OWL-based syndication.

Full proofs of the results presented in this work can be found in
the accompanying technical report [10].

2. PRELIMINARIES
In this section, we briefly provide an overview of OWL and de-

scription logics, query answering for DL KBs, and tableau algo-
rithms for DL reasoning.

2.1 The Web Ontology Language
The W3C-approved Web Ontology Language (OWL) is the rec-

ommended standard for the formally representing content on the
Web. One of the main benefits of OWL is the support for formal
reasoning, as the semantics of a variety of its sub-languages are
firmly founded in description logics (a decidable fragment of First
Order Logic). In particular, the sub-language OWL-DL is a syntac-
tic variant of the description logicSHOIN [13], with an OWL-
DL ontology corresponding to aSHOIN KB. In this work, we
address a subset ofSHOIN , namelySHI; therefore, we briefly
introduce the syntax and semantics ofSHI.

Let C,R, I be non-empty and pair-wise disjoint sets ofatomic
concepts, atomic roles, and individuals respectively. The set of
SHI roles (roles, for short) is the setR ∪ {R− | R ∈ R}, whereR−

denotes the inverse of the atomic roleR. Concepts are inductively
using the following grammar:

C← A | ¬C | C1 uC2 | C1 tC2 | ∃R.C | ∀R.C

whereA ∈ C, a ∈ I , C(i) aSHI concept,R a role, andS a simple
role (i.e., no transitive roles or super-roles of a transitive role)2. We
write> and⊥ to abbreviateC t ¬C andC u ¬C respectively.

A role inclusion axiomis an expression of the formR1 v R2,
whereR1,R2 are roles. Atransitivity axiomis an expression of
the formTrans(R), whereR ∈ R. An RBox R is a finite set of
role inclusion axioms and transitivity axioms. ForC,D concepts,
a concept inclusion axiomis an expression of the formC v D. A
TBox T is a finite set of concept inclusion axioms. An ABoxA is
a finite set of concept assertions of the formC(a) (whereC can be
an arbitrary concept expression), role assertions of the formR(a,b)
and inequality (equality) assertions of the forma , b (respectively
a = b). A KB K = (T,R,A) is composed of TBoxT, RBox R and
ABox A. Denote the set of individuals in KBK (ABox assertionα)
asIK (respectivelyIα).

An interpretationI is a pairI = (∆I, .I), where∆I is a non-
empty set, called thedomainof the interpretation, and.I is the
interpretation function. The interpretation function assigns toA ∈
C a subset of∆I, to eachR ∈ R a subset of∆I × ∆I and to each
a ∈ I an element of∆I. The interpretation function is extended to
complex roles and concepts as given in [13].

The satisfaction of aSHI axiom/assertionα in an interpretation
I, denotedI |= α is defined as follows: (1)I |= R1 v R2 iff (R1)I ⊆
(R2)I; (2) I |= Trans(R) iff for everya,b, c ∈ ∆I, if (aI,bI) ∈ RI

and (bI, cI) ∈ RI, then (aI, cI) ∈ RI; (3) I |= C v D iff CI ⊆ DI;
(4) I |= C(a) iff aI ∈ CI; (5) I |= R(a,b) iff (aI,bI) ∈ RI; and (6)
I |= a , b iff aI , bI. The interpretationI is a model of an RBox
R (TBox T) if it satisfies all the axioms inR (respectivelyT). I is
a model ofA, denoted byI |= K, if it satisfies all the assertions in
A. Lastly,I is a model ofK, denoted byI |= K, iff I is a model of
T, R, andA.

We also introduce the following notation: denote byMod(K)
the set of all models forK. Additionally, given aSHI concept
2See [13] for a precise definition of simple roles.

WWW 2007 / Track: Semantic Web Session: Applications

728

C, denote byDepth(C) the maximum modal depth forC (i.e., the
maximum nesting depth of quantifiers).

Lastly, we provide a brief overview of conjunctive ABox queries
(query, for short) for description logics. A queryQ consists of a
conjunction of ABox assertions of the formC(a) or R(a,b) (see
[14] for a precise definition), in which variables can be used in
place of individuals and are considered as existentially quantified
(the set of variable names, denotedV(Q), is assumed to be distinct
from the individual names,I). Query answering is the task deter-
mining if Q is a logical consequence of the KBK (denotedK |= Q);
that is, determining if for all modelsI of K, I |= Q. As query
retrieval is addressed in this work, we briefly introduce the follow-
ing notation (adopted from [14]):〈x1, ..., xn〉 ← Q indicates that
the variablesx1, ...xn appearing inQ must be bound to individual
names, therefore constituting the answer to the query. These vari-
ables are referred to asdistinguishedvariables, denotedDV(Q).
The answer setof a query〈x1, ..., xn〉 ← Q w.r.t. to K is the set
n-ary tuples defined by the following:

{〈a1, ...,an〉 ∈ In
K | K |= Q[x1/a1, ..., xn/an]}

whereQ[x/a] represents the query,Q, with all occurrences of vari-
ablex substituted by the individual namea. We note that if a query
can be partitioned into unconnected components (i.e., components
that do not share variables), then they are considered independently.
Without loss of generality, we assume queries are connected in the
remainder of this work [7]. We additionally introduce the follow-
ing notation: given queryQ, let Con(Q), Rol(Q) denote the set of
concepts and roles inQ respectively. Lastly, given a queryQ, with
abuse of notation, we denote byDepth(Q) the maximumDepth(C)
for all C ∈ Con(Q).

2.2 Tableau Algorithms
DL tableau-based algorithms decide the consistency of an ABox

A with respect to a TBoxT and RBoxR by trying to construct (an
abstraction of) a common model forA, T, andR, called acomple-
tion graph [13]. Each node in the graph represents an individual
that is labeled with a set of concepts that it satisfies (in the par-
ticular model). Formally, a completion graph for an ABoxA with
respect toT is a directed graphG = (V,E,L, ,̇). Each nodex ∈ V
is labeled with a set of conceptsL(x), and each edgee = 〈x, y〉
with a setL(e) of role names. The binary predicate,̇ is used for
recording inequalities between nodes. This graph is constructed by
repeatedly applying a set of tableauexpansion rules, adding new
concept labels and edges to the graph when necessary. This pro-
cess continues until the tableau is fully expanded and no additional
rules can be applied. A node,x, contains a clash if a contradiction
exists in its label (e.g.,C,¬C ∈ L(x)) or between two nodes (equal-
ity and/or inequality). It is noted that the tableau algorithm can
be saturated such that all possible completions of a KB are found
(corresponding to all models). We lastly introduce the following
notation: denote byComp(K) the set of all complete, clash-free
completions ofK (i.e., all models); additionally, given completion
graphG, denote byRoots(G) the subset ofG containing root nodes
(corresponding to named individuals) and their labels, as well edges
and edge labels between root nodes.

3. SYNDICATION FRAMEWORK
In this section we formally define the DL-based syndication fram-

ework proposed in this work. As in typical syndication systems, we
assume syndication brokers deliver relevant information to the ap-
propriate subscription requests. Within this framework, a subscrip-
tion is comprised of a conjunctive ABox (instance) query, which
represents the subscribers interests, and an expiration time (i.e., the

number of time units that the subscription is valid). The subscrip-
tion query can be thought of as a continuous conjunctive query that
should be evaluated until the expiration time. Therefore, the query
is issued once over a changing ABox whose results set is contin-
uously updated as the ABox changes. Intuitively, the answer set
of a continuous conjunctive ABox query at timet is the set of all
variable bindings entailed by the KB at timet and can be seen as an
extension of the definition of a conjunctive query presented earlier.

Definition 1. (Continuous Conjunctive ABox Query) Define a
continuous conjunction ABox queryQc with respect to a DL KBKt

(K at timet) such that it produces results at timet, denotedQcr (t),
as follows:

Qcr (t) = {〈a1, ...,an〉 ∈ In
Kt
| Kt |= Qc[x1/a1, ..., xn/an]}

Given this, asubscriptionis defined as follows:

Definition 2. (Subscription) A subscriptionS is defined as a pair
(Qc, t), whereQc is a continuous conjunctive ABox query that is
evaluated fort time units.

We denote the continuous query of a subscription asS(Qc) and
the expiration time asS(t). We now define asubscriberto be com-
posed of a set of subscriptions and a unique identifier:

Definition 3. (Subscriber) A subscriberSub is defined to be a
pair (s, i), wheres is a set of subscriptions andi is a unique identi-
fier.

Denote a subscriber’s set of subscriptions asSub(s), and its iden-
tifier asSub(i). Next, we define apublisherto be identified by a
unique identifier:

Definition 4. (Publisher) A publisherPub is defined as being
composed of and identified by a unique identifieri.

Additionally, apublicationis defined to be composed of a set of
ABox assertions, the number of time units that the publication is
valid, and the identifier of the publisher that produced the informa-
tion; after the specified time units have passed, it is assumed that
the publication is discarded.

Definition 5. (Publication) A publicationP is defined as a tuple
(α, t, p), whereα is a set of DL ABox assertions that expire aftert
time units, andp is the identifier of the publisher that produced the
publication.

Given a publicationP, denote the set of ABox assertions asP(α),
the expiration time asP(t), etc. Intuitively, asyndication broker
maintains a local KB, in which newly published information is inte-
grated. Additionally, the syndication broker maintains the currently
registered subscribers (that have associated subscriptions) and pub-
lishers. This is formally defined as follows:

Definition 6. (Syndication Broker) A syndication brokerB is de-
fined as a tuple (S,P,Kl), whereS is a set of subscribers,P is a set
of publishers, andKl is the broker’s local DL KB.

We denote a syndication broker’s subscriptions, publishers, and
KB asB(S), B(P), andB(Kl) respectively. After a new publication
is received, it is the broker’s task to determine the subscribers for
which this new infromation is relevant. Before defining subscrip-
tion matches, we define a genericupdate functionthat takes a set
of publications and integrates them into the broker’s KB. Such a
function is necessary for integrating newly published information
into a DL KB.

WWW 2007 / Track: Semantic Web Session: Applications

729

Definition 7. (Update Function) Define the update functionup-
date(K, P) to take as input a DL KBK and a set of publications P
and return a new consistent DL KBK′ that is the result of updating
K with P(α), for all P ∈ P.

Observe that this update function is generic, as there are many
different ways to interpret the update. Such problems have been
studied extensively in literature for updating logical KBs. We do
not impose a particular type of update semantics in the formaliza-
tion of the syndication framework; rather, we only enforce that the
update function result in a consistent KB. This is necessary because
if the updated KB is inconsistent, then everything is trivially en-
tailed. In Section 4.1 we define a specific update function, referred
to assyntactic updates.

Lastly, we define a match for a subscription request. As infor-
mation (documents) is published from multiple publishers and re-
mains valid in the broker’s local KB for varying time, a match for a
subscription can actually be a composition of the information from
multiple publications; that is, the information provided in multi-
ple publications collectively forms a match for the query. To the
authors’ knowledge, recent approaches have not investigated such
functionality; rather, only information from individually published
documents form a match for a given subscription. However, such
a capability is beneficial, as information can be considered collec-
tively and form matches not found otherwise.

We additionally distinguish between two types of subscription
matches, namelyinformation matchesandpublication matches. An
information match refers to the individuals bound to the (distin-
guished) variables of a continuous query representing a subscrip-
tion; that is, the result returned to the subscriber is actually the
query answer rather than the publication(s) responsible for the an-
swer. This type of match aligns with recent work in XML-based
syndication literature, in which the actual information is filtered
and the query answers are returned to the user [16]. In contrast, a
publication match refers to the collection of publications that sat-
isfy a subscription; that is, given an information match for a regis-
tered subscription, return all minimal sets of publications that cause
this match to occur; this aligns with the task of selective content-
based filtering of publications. It is clear that given an information
match, there is a corresponding set of publication matches.

The distinction between these two match types is made as addi-
tional computation is needed to derive all the minimal sets of pub-
lications responsible for an information match. Further, the type
of match required is application dependent; for example, in OWL-
based syndication of news feeds, it is clear that publication matches
are needed. In contrast, in the financial domain, analysts are gen-
erally interested with the actual information rather than the docu-
ments themselves. If we consider our previous example involving
the conceptRiskyCompany, we can observe that analysts are likely
to be more interested in the actual instances ofRiskyCompany,
rather than the articles that discuss them; this is intuitive, as the
actual query answer is the actionable information for their pur-
poses (e.g., stock trading). In this work, we address both of these
matches; however, our current evaluation focuses on information
matches, leaving the remainder as future work. We now define an
information match:

Definition 8. (Information Match) Define a tuple of individuals
〈a1, ...,an〉 to be an information match at brokerB for subscription
S at timet, if and only if the following holds:

〈a1, ...,an〉 ∈ B(In
Kt

) ∧ B(Kt) |= S(Qc[x1/a1, ..., xn/an])

Before defining a publication match, we present the notion of
minimal justificationsfor an entailment in DLs, which has been
formally investigated in literature [15].

Definition 9. (Minimal Justification) [15] LetK |= α, whereα
is a DL axiom andK a DL KB. A fragmentK′ ⊆ K is a minimal
justification forα in K if K′ |= α andK′′ 6|= α for everyK′′ ⊂ K′.
Denote the set of minimal justifications forK |= α asJust(K, α).

Now we present the definition of apublication matchwhich uti-
lizes minimal justifications to define to the publications responsible
for an information match:

Definition 10. (Publication Match) Let〈a1, ...,an〉 be an infor-
mation matchI at brokerB for subscriptionS at time t. Let J be
the set of minimal justifications forI :

J = Just(B(Kt), S(Qc[x1/a1, ..., xn/an])})

Define a set of publicationsP to be a publication match at broker
B for subscriptionS at time t if there existsj ∈ J such that the
following holds:

∀P ∈ P(∃a ∈ j ∧ a ∈ P(α)) ∧ ∀a ∈ j(∃P ∈ P∧ a ∈ P(α))

We conclude this section with a brief example demonstrating a
composite match (both information and publication matches), and
the framework in general. Assume a syndication brokerB is com-
posed of one subscription and two publishers. Additionally, assume
that the broker’s local KB contains the axioms defined previously
in Table 1. The the broker is composed of the following:

S = {S1}, P = {P1,P2}

Kl = { :movedToJunk, :onRecommendation, :RiskyCompany}

Assume subscriberS1 has registered the following subscription for
all instances of the classRiskyCompany:

(RiskyCompany(x),∞) ∈ S1(s)

where∞ indicates that the subscription does not expire. Addition-
ally assume thatP1 publishes thatBOASellList (assumed to be
an instance ofSellList) has a sell recommendation forFord and
P2 publishesMoodys movedFord credit to junk status. This is
formalized as follows:

PP1 = ({ :BOASellList :hasRecommendation :Ford },∞,1)
PP2 = ({ :Moodys :movedToJunk :Ford },∞,2)

where∞ indicates that the publications do not expire. For ease of
exposition, assume thatPP1 andPP2 arrive at the broker at time 1
and 2 respectively, and that the update function expands the explicit
ABox assertions in the broker’s KB with those contained in the
publication (see Section 4.1 for further details). WhenPP1 arrives
at the broker,PP1(α) is integrated intoB(Kl), resulting in a updated
broker KBK′. It is obvious that at this time the individualFordwill
not satisfy the subscription; therefore, there will not be a match
for S1 at time 1. However, whenPP2 is published at time 2 and
integrated intoK′, there is a composite publication match{PP1, PP2}

and an information matchFord for the subscription (due to various
OWL inferences).

4. REASONING FOR SYNDICATION
As discussed earlier, the main limitation in the proposed syn-

dication framework is related to DL reasoning through incremen-
tal changes to the underlying KB. Therefore, the remainder of this
paper addresses the two previously mentioned performance bottle-
necks, namely consistency checking and query answering through
updates. Before addressing these issues, we present the update
function adopted for this work.

WWW 2007 / Track: Semantic Web Session: Applications

730

4.1 Syntactic Updates
For the task of syndication, we propose an update function that

we refer to assyntactic updates, which supports syntactic changes
of KB assertions. Intuitively, syntactic updates can be described
as an update in which all new assertions are directly added (or re-
moved) to the asserted (base) axioms. For purpose of this work,
ABox assertions can take the form of individual equality (e.g.,{:Fo-
rd owl:sameAs :FordMotorCorp}) and inequality assertions (e.g.,
{:Moodys owl:differentFrom :SandP}), concept assertions (e.g.,{:F-
ord a :Company}; note that complex concept assertions are possi-
ble as well), and role assertions (e.g.,{:Ford :downgradedBy
:Moodys}). Formally, this is described as follows:

Definition 11. (Syntactic Updates) LetA be the ABox of an ini-
tial KB K. Then, under syntactic updates, updatingK with an
ABox addition (respectively deletion)α, written asK + α (resp.
K − α), results in an updated ABoxA′ such thatA′ = A∪ {α} (resp.
A′ = A \ {α}). Denote byK ⊕ α the syntactic update ofK with α.

This type of update is different when compared to related work
in update semantics [18] and belief revision [6] for DLs; however,
it is clearly applicable to syndication applications. Further, there
have been negative results with respect to other candidate update
semantics for DL KBs. In particular, [18] shows that the standard
(minimal change) model-based update semantics cannot be repre-
sented in the DLs considered in this paper. [6] shows that many
DLs, including those considered here, cannot satisfy the rationality
postulates proposed in the AGM theory of belief revision.

It is clear that under syntactic updates, the resulting KB can
be inconsistent after an update; however, as required by Defini-
tion 7, the update function must result in a consistent KB. For
this work, we assume that if the resulting KB is inconsistent, then
the newly published information is rejected (i.e., removed from the
KB). While discarding the recent publication may not be the ideal
course of action in all syndication systems, addressing this issue
further is out of the scope of this paper. However, we plan to ad-
dress this issue in future work and provide some initial insights in
Section 6.

4.2 Incremental Consistency Checking
After newly published information is integrated in the broker’s

KB, consistency must be re-checked. As stated earlier, with large
ABoxes, checking consistency introduces substantial overhead. In
this case of syndication, this problem is compounded, as the bro-
ker’s KB will become substantially large because the KB can con-
tain permanent domain knowledge, as well as publications that re-
main valid for substantial time periods.

To address this issue, we have recently investigated incremen-
tal consistency checking in OWL KBs. In particular, in [12] we
present an approach for incrementally updating tableau comple-
tion graphs under syntactic ABox updates in the description logics
SHIQ andSHOQ [12], which encompass the portion of OWL-
DL addressed later in this work. In [12] the update algorithm adds
new (removes existing for deletions) components (edge, nodes, or
labels) introduced by the update to a (cached) completion graph
from the consistency check prior to the update; after this, standard
tableau completion rules are re-fired to ensure that the model is
complete. Therefore, the completion graph built prior to the up-
date (e.g., during the initial consistency check) is cached and up-
dated such that if a model exists (i.e, the KB is consistent after the
update), a new completion graph will be found. It was observed
that updates did not have a large effect on the existing completion
graph; therefore, orders of magnitude performance improvements

are achieved. Due to space limitations, further details regarding the
approach are omitted here; however, they can be found in [12].

4.3 Continuous Query Answering
After guaranteeing consistency of an updated KB, the various

subscriptions registered with the broker can be (re)evaluated. In
the remainder of this section, we present an approach for more effi-
cient continuous query answering for a subset of OWL-DL, specifi-
cally unfoldableSHI. Two restrictions are imposed on the queries
supported in the approach, namely that only simple roles (i.e., no
transitive roles or super-roles of a transitive role) can be used in the
query, and the query must contain at least one distinguished vari-
able (note that more frequently in realistic scenarios, queries con-
tain some number of distinguished variables). These restrictions
enable the techniques presented in the following sections; further
query answering in the presence of transitive roles is a relatively
open problem (however, see [7]). In the following sections we as-
sume that all concepts are in negation normal form (i.e., negation
only occurs in front of concept names), and all concepts are fully
unfolded such that they are composed of only primitive (base) con-
cepts [3].

Before discussing the overall goal of the approach, we make a
few simplistic observations: by monotonicity ofSHI (and OWL-
DL in general), continuous query answering in the event of ABox
additions reduces to determining any new bindings that are entailed
by the KB, whereas handling deletions reduces to guaranteeing that
previous bindings are still entailed.

4.3.1 Localizing Effects of Updates
When querying very large ABoxes, one of the main problems is

that a large number of individuals in the KB must be considered
as potential variable bindings. However, we propose that under
the types of updates considered in this work, the candidate query
bindings can be drastically pruned. A key insight is demonstrated
if we consider a simple query such as〈x〉 ← Company(x). Intu-
itively, in the event an update is an addition, we would only like to
consider affected named individuals not previously bound tox as
potential new bindings (i.e., answers); in contrast if the update is a
deletion, only individuals previously bound tox that were affected
by the update need to be re-checked. Therefore, the main goal of
the approach presented here is to localize the named individuals in
the KB that are affected by the update in such a way that they may
impact the previous query results.

Before discussing this further, we define the notion ofexplicitly
affected individuals, which intuitively are the individuals manipu-
lated during the incremental update of all completions for a KB.

Definition 12. (Explicitly Affected Individuals): GivenSHI KB
K and ABox updateα, define the explicitly affected individuals, de-
notedEI(K, α), to be the set of all named individualsa ∈ IK ∪ Iα
such that either:

1. a ∈ Iα
2. during the incremental update of someG ∈ Comp(K) with α

(using the approach presented in Section 4.2),a has some la-
bel change, or outgoing/ingoing edge that is added/removed
or has a label change

(a) if the update introduces non-deterministic choices, each
completion is saturated.

Additionally, we introduce the notion of aroot pathbetween two
individuals:

Definition 13. (Root Path): Let there be a root path of length
D between two nodesx and y of a completion graph if they are
reachable by at mostD edge traversals where:

WWW 2007 / Track: Semantic Web Session: Applications

731

1. edge direction is ignored

2. successive traversal of edges labeled with non-simple roles
is only counted once

3. if there exists more than one label for an edge, one of which
is not a simple role, then the non-simple edge is traversed
and condition 2 is assumed

We now define the general notion ofaffected individualsadopted
for the purpose of this work; given these individuals, we show that
all new (resp. invalidated) bindings for a query can be found.

Definition 14. (Affected Individuals): GivenSHI KB K, con-
junctive queryQ, and ABox updateα, define an individuala to be
in the set of affected individuals, denotedAI(K, α), if either:

1. a ∈ EI(K, α)

2. (a) α an addition: for someb ∈ EI(K, α) there is a root
path of at most lengthDepth(Q) betweena and b in
someG ∈ Comp(K ⊕ α)

(b) α a deletion: for someb ∈ EI(K, α) there is a root path
of at most lengthDepth(Q) betweena andb in some
G ∈ Comp(K)

It can be shown that for there to be a new (resp. invalidated)
binding after an update, at least one named individual in the binding
must be inAI(K, α).

P 1. Let K be aSHI KB, Q a conjunctive query,
and α an ABox update. IfK 6|= Q[x1/a1, ..., xn/an] and K ⊕ α |=
Q[x1/a1, ..., xn/an] (resp. K |= Q[x1/a1, ..., xn/an] and K ⊕ α 6|=
Q[x1/a1, ..., xn/an]), then there exists some named individual b∈
IK ∪ Iα that is bound to some y∈ V(Q) such that b∈ AI(K, α).

Proposition 1 is intuitive as it states that for there to be a new
(resp. invalidated) binding, then there must exist some individual
in that binding that either is directly affected by the update in some
completion graph or is in theproximity of some other individual
that was directly affected. We are able to show that the notion of
proximity introduced in Proposition 1 (conditions 2 and 3) is suffi-
cient (observe that currently we do not take into account the struc-
ture of the concepts in the query; however, we plan to address this in
future work). More importantly, Proposition 1 implies that in order
to find the affected individuals, one can update allG ∈ Comp(K)
and gather the individuals that satisfy the properties provided.

It is clear, however, that incrementally maintaining all comple-
tion graphs for a given KB is not practical; further in the presence
of a reasonable degree of non-determinism in a KB, saturating the
tableau is a very expensive process. To avoid performing a full sat-
uration of the initial KB, we propose building a structure that we
refer to as asummary root graph.

Definition 15. (Summary Root Graph): LetG be the completion
graph built forSHI KB K by applying all tableau expansion rules
to K as normal, however with the following modifications:

1. if a non-deterministic choice is encountered, add all labels in
the disjunction to the node without creating a new branch

2. if a clash is encountered, it is ignored
Define the summary root graphSG asSG = Roots(G)

Observe that condition 2 is required, as adding all labels from a
disjunction can obviously introduce clashes; also note that only the
structure for root nodes and their edges is kept to reduce memory
overhead. It can be seen that the summary root graph does not
correspond to a model of the KB; however, the approach guarantees

that if a root node or edge between root nodes has a label in some
completion graph corresponding to a model for the KB, then that
label will be in the label set for that individual in the summary
root graph. The aim behind the approach is to use this structure
to localize an overestimate of the explicitly affected individuals; an
overestimate is acceptable as, in the end, we are trying to find only
candidatedistinguished variable bindings.

Using the summary root graph, an overestimate forEI(K, α) can
be provided; we first note that in the case of ABoxdeletions, we
propose using axiom tracing [2, 15, 12] during the application of
expansion rules, effectively tracking the asserted axioms responsi-
ble for changes to the summary root graph. We also note that there
is a small modification when checking if the expansion rules can be
applied to a node (to guarantee completeness). Specifically, node
labels are marked when they have had a completion rule applied to
them during the overestimate procedure; if the label is not marked,
then the expansion rule is applied. Details are omitted here, how-
ever they can be found in Table 2 of [10].

Definition 16. (Overestimate of Explicitly Affected Individuals):
Let SG be the summary root graph forSHI KB K andα an ABox
update. Define the overestimate of explicitly affected individuals,
denotedEISG(K, α), to be defined by the following procedure:

1. (a) α an addition: add the structure introduced by the up-
date toSG (as in [12]) and apply the tableau expansion
rules toall labels of individualsx of SG such thatx ∈ Iα

(b) α a deletion: remove all structures fromSG solely de-
pendent on the deleted assertion (determined as in [12])
and apply the expansion rules to all individualsand
their neighbors if the node was affected by the initial
retraction of structures dependent onα

2. apply the expansion rules toall labels of individuals (named
or un-named) reached by subsequent rule firings

3. use the modifications to the tableau expansion rules in Defi-
nition 15 and Table 2 of [10]

EISG(K, α) is then composed of all root nodes that are reached dur-
ing the application of expansion rules, have a label change, or are
adjacent to an edge or edge label that changed.

Note that after the application of expansion rules finishes, it is as-
sumed that un-named nodes and their edges are discarded from the
summary root graph (which has therefore been updated). Addition-
ally, when the summary root graph is updated during an addition,
axioms traces are updated using the same approach as in [12]. It
can be shown that after the update, the overestimate of the explic-
itly affected individuals satisfies the following property:

P 2. Given aSHI KB K, ABox updateα and sum-
mary root graph SG for K, then the approach for finding EISG(K, α)
is terminating and EI(K, α) ⊆ EISG(K, α).

Proposition 2 implies that we can useSG to locate a superset of
the affected individuals (defined below).

Definition 17. (Overestimate of Affected Individuals): LetK be
aSHI KB, Q a conjunctive query,SG the summary root graph for
K, α an ABox update andAIP(K, α) the set of individuals reach-
able by a root path of lengthDepth(Q) from somea ∈ EISG(K, α)
according to properties 2a and 2b of Definition 1. Define the over-
estimate of affected individuals, denotedAIO(K, α), asAIO(K, α) =
EISG(K, α) ∪ AIP(K, α).

Discussion.It is clear that there are possible limitations to the
current approach for determining the overestimate of individuals

WWW 2007 / Track: Semantic Web Session: Applications

732

affected by updates. In particular, if the approach produces an over-
estimate that is too large, the value of the approach may degrade
(note that in the worse case, the number of individuals one would
have to check is the same as in the non-incremental case). However,
our initial results indicate that the approach is extremely effective.
An additional limitation of the approach is the memory overhead
imposed by maintaining the summary root graph, which is clearly
a trade-off in the approach. One last issue is related to the applica-
tion of expansion rules on the summary root graphwith respect to
the update. We point out here that in the worst case this could im-
pose overhead that is not practical for the performance demands of
some syndication applications; however, our initial results demon-
strate that this is not the case. This is because the expansion rules
are applied with respect to only the update and not the entire KB.
This is actually quite intuitive, as one would expect for updates
to only affect a small portion of the KB. Further, if we consider
syndication of news feeds for example, one would expect updates
to be generally focused on a small number of individuals. This
is clearly evident in the financial domain; for example, the Dow
Jones Newswires disseminates on average 10,000 news feeds per
day3, which are typically terse and focused on specific companies,
industries, etc.

4.3.2 Query Impact on Candidate Individuals
When a query contains roles and more complex query patterns,

considering only directly affected individuals as potential new bind-
ings (resp. invalidated bindings for deletions) will not suffice. For
example, consider the following query for all companies that have
sell recommendations:〈x,y〉 ← onRecommendation(x,y) ∧ Com-
pany(x) ∧ SellList(y). Also assume that there is an ABox addition
thatFord is aCompanyand that after the update,AIO(K, α) only in-
cludesFord. It is clear we cannot simply considerFord as the only
candidate binding for the variables in the query, as there could ex-
ist any number of individuals (i.e., instances ofSellList) related to
Ford by anonRecommendationrole. Therefore, it can be observed
that the query structure/shape impacts the affected individuals that
must be considered as bindings for distinguished variables; we re-
fer to this as thequery impact.

We now introduce a technique for determining the query impact
on the affected individuals, which is a straightforward approach that
induces very little overhead. The key insight is that for a new query
binding to be entailed (or invalidated in the case of deletions) under
syntactic ABox updates inSHI, at least one named individual that
is bound to somex ∈ V(Q) must be inAIO(K, α). This, along with
the facts that the query is assumed to be connected and contain only
simple roles, implies that given an addition update, the query im-
pact on the original affected individuals can be taken into account
by also considering all named individuals in the updated comple-
tion graph (discussed in Section 4.2) that are reachable from some
a ∈ AIO(K, α) by at mostn edge traversals (with the direction ig-
nored), wheren is the longest path in the query graph. Given this,
under additions only the various combinations of individuals in this
expanded set of affected individuals need to be considered as pos-
sible new bindings for distinguished variables. A similar approach
can be used to take into account the query impact under deletions,
however the original completion graph (prior to its update) must
be used for the search of depthn (i.e., deletions can remove struc-
tures from the completion graph). In the case of deletions, one
then needs to re-check any previous binding that contains some
individual in the expanded set of affected individuals. Denote by
query impact(AIO(K, α),Q) the extended set of affected individu-
als under this approach for taking into account the query impact.
3Source: http://www.djnewswires.com/us/djtotalcoverageinfo.htm

It is clear that the previous technique does not leverage the ac-
tual structure of the query (i.e., concepts and roles in the query);
therefore, we now introduce a more effective approach that exploits
such information, but also introduces additional overhead. Due to
space limitations, the approach is only presented for additions (see
[10] for a discussion regarding deletions); it is also noted that in
typical syndication systems, updates are much more frequently ad-
ditions. We first point out that it has previously been shown that
a conjunctive query can be answered by syntacticallymappingthe
query into all completion graphs for the KB [20]. More specif-
ically for the DL SHIQ (also applicable toSHI), [20] shows
that given a completion graphG and a queryQ, the query can be
mapped intoG, denotedQ ↪→ G. If the query can be mapped into
all completions, then the KB satisfies the query. It can be seen that
such a mapping is usable when of taking into account the query
impact under additions. We note, however, that such a mapping
introduces overhead, as it requires that the KB must be extended
with > v Ct¬C for each conceptC ∈ Con(Q). In order to further
reduce the new candidate bindings, each individual inAIO(K, α)
can be iteratively substituted into variables in the query; neighbor
nodes in the updated completion graph can then be inspected to see
if they can be mapped into the remaining nodes (via roles whose
labels match the query graph) in the query graph (note that distin-
guished variables in the query graph are mapped into nodes corre-
sponding to named individuals). If there does not exist a mapping
in which a given named individual can be mapped into a particu-
lar distinguished variable, then this individual does not need to be
considered in the candidate distinguished variable set for this vari-
able; this is because we have just found a completion graph (i.e.,
model) in which the query cannot be mapped [20]. However, if a
named individual can be mapped into a distinguished variable, then
we must consider this individual as a candidate binding.

Definition 18. (Query Impact on Candidate Bindings): LetK be
aSHI KB, Q a conjunctive query,α an ABox addition andG ∈
Comp(K⊕α). Define the set of candidate bindings for distinguished
variablex under query impact, denotedAQI(x), as follows:

AQI(x) = {a | a ∈ AIO(K, α) ∧ Q ↪→{x←a} G}∪
{a | b ∈ AIO(K, α) ∧ Q ↪→{x←a,y←b} G}

whereQ ↪→{x←a} G denotes a mapping ofQ into G with the re-
striction that the distinguished variablex must be mapped into the
named individuala in the completion graph.

4.3.3 Continuous Query Answering Algorithm
We now describe the algorithm for answering continuous ABox

queries. Similar to the discussion presented above, the algorithm
is presented in terms of a single query. Note that the algorithm
utilizes a combination of both techniques for taking into account
query impact. It is assumed the KB is first preprocessed such that
for eachC ∈ Con(Qc), an axiom> v C t ¬C is added to the KB;
this is necessary only in the cached completion graph for consis-
tency checking and not in the summary root graph. Additionally,
it is assumed the summary root graph is created at startup and that
the initial set of answers forQc is previously determined.

Algorithm 1 presents the main continuous query answering al-
gorithm. The approach first locates the affected individuals; this
is denoted bylocalizeeffects(SG, α) and takes as input an initial
summary root graphSG and updateα and is assumed to both up-
dateSG and return the affected individuals. Additionally, the ex-
tended set of affected individuals is found using the first approach
for query impact. If the update is an addition, the set of can-
didate distinguished variable bindings (determined using Defini-
tion 18) is iterated over and checked for entailment. It is assumed

WWW 2007 / Track: Semantic Web Session: Applications

733

that standard techniques for query answering are used (e.g., see
[14]). If the update is a deletion, each tuple in the previous an-
swer set is iterated over; tuples that do not contain some individual
in query impact(AIO(K, α),Q) are still valid, as the update did not
affect any of the bound individuals. Otherwise, the tuples are re-
checked for entailment.

P 3. Algorithm 1 is sound, complete, and terminat-
ing.

Algorithm 1 updatequery results(K,SG,Qc,R, α)
Input:

K: initial KB
SG: summary root graph forK
Qc: continuous conjunctive query
R: set of all current bindings (answer set)
α: ABox update

Output:
K: updated KB
SG: updated summary root graph
R: updated bindings (answer set)

1: K← K ⊕ α
2: if K is not consistentthen
3: K← Retractα from K
4: return K,SG,R
5: end if
6: AIO(K, α)← localizeeffects(SG, α)
7: QIS ← query impact(AIO(K, α),Q)
8: if α is an additionthen
9: for all a1 ∈ AQI(x1), ...,an ∈ AQI(xn) s.t. x ∈ DV(Qc) do

10: if K |= Qc[x1/a1, ..., xn/an] then
11: R← R∪ {〈a1, ...,an〉}
12: end if
13: end for
14: else ifα is an deletionthen
15: for all 〈a1, ...,an〉 ∈ Rdo
16: if QIS ∩ {a1, ...,an} = ∅ then
17: continue
18: else if K 6|= Qc[x1/a1, ..., xn/an] then
19: R← R\ {〈a1, ...,an〉}
20: end if
21: end for
22: end if
23: return K,SG,R

5. EMPIRICAL RESULTS
We have implemented the basic functionality of the framework

defined in Section 3 and the algorithm presented in Section 4. In the
current implementation, publishers can register and publish infor-
mation (currently all information remains indefinitely valid). Ad-
ditionally, subscribers can register subscriptions in the form of con-
tinuous conjunctive queries that can remain valid for varying amounts
of time. In the evaluation, we have focused on information matches
as the technical contributions of this work mainly address scalabil-
ity issues with respect to this problem. Further evaluation of publi-
cation matches is left as future work.

We have performed an emperical evaluation using the Lehigh
University Benchmark (LUBM) [8] (SHI expressivity), as it pro-
vides a large ABox, therefore simulating a broker with large num-
bers of persistent publications; additionally, it supplies queries with
similar complexity as those used in the examples throughout this
paper. It should be noted that 8 OWL equivalent class axioms
were changed to subclass axioms, so that the KB was unfoldable.
Three queries from LUBM were selected as sample subscriptions
and continuously run over a dataset comprised of one university,

containing 16,283 individuals and 78,094 assertions. The follow-
ing three queries were used in the evaluation (LUBM queries 1, 3,
and 13 respectively):

〈x〉←GraduateStudent(x)∧takesCourse(x,GraduateCourse0)
〈x〉←Publication(x)∧publicationAuthor(x,AssistantProfessor0)
〈x〉←Person(x)∧hasAlumnus(University0,x)

In the evaluation, the queries were run over the KB, which was
updated with a collection of ABox assertions, simulating newly
published information; updates were randomly selected individual
type (atomic) and/or role assertions, as this aligns with the types of
updates one would expect in syndication systems. Each published
document was indefinitely valid. To ensure that some of the up-
dates affected the query results (i.e., subscriptions), there was a 50-
percent probability that the update referred to one of the individu-
als bound to a distinguished variable; therefore, approximately half
of the selected updates actually affected the subscriptions. Tests
were performed for each update type (additions and deletions) us-
ing varying update sizes; namely 1, 5, 10, 15, and 25 assertions.
Each test was performed 25 times, and the results were averaged.
Lastly, the experiments were performed using a 1.5 GHz processor
with 1 GB of memory.

In the evaluation, two versions of the DL reasoner Pellet4 were
used; a regular version of the reasoner and an optimized reasoner
that used the techniques presented in this paper. In the regular ver-
sion of the reasoner, the standard query answering algorithm was
performed after each update. Additionally, the KAON25 OWL-DL
reasoner was used in the evaluation. KAON2 reduces OWL KBs
to disjunctive datalog and is optimized for query answering. Addi-
tionally, KAON2 was used as it provides functionality to add and
remove assertions and re-run queries after a KB has been updated
(note that it is unclear whether KAON2 currently performs view
maintenance). Therefore, using this as a comparison, we aimed
to provide interesting insights into tableau-based algorithms for
OWL-based syndication purposes when compared to other possi-
ble approaches.

Results for continuous query answering for the various LUBM
queries are presented in Figure 1. Note that the optimized ver-
sion of Pellet is denoted as “Pellet-C”, and the “0” update size
value represents the time to run the initial query prior to perform-
ing an update (this includes the start-up cost for the continuous
query answering approach). In all three queries, the initial query
answering time (prior to any update) in the regular version of Pellet
was slightly better than the optimized version. This is due to the
overhead introduced by the generation of the summary root graph;
specifically, the average time to build the summary root graph was
2.7 seconds (on average 500 milliseconds larger than the initial con-
sistency check). We note that there is little overhead because of the
small amount non-determinism in LUBM (primarily due to mak-
ing the KB unfoldable). For exposition, we investigated the time to
build the summary root graph for the original version of LUBM,
which contains a large amount of non-determinism. It was ob-
served that the average time to build the summary root graph took
approximately 26.1 seconds. This demonstrates the expected im-
pact of a substantial amount of non-determinism on the approach;
while this introduces overhead, we argue that this is acceptable, as
it is only performed once at startup. Further, the generation of the
summary root graph was far more efficient than the alternative of
saturating the initial KB, as this would not terminate.

4Pellet project homepage: http://www.mindswap.org/2003/pellet/
5KAON2 project homepage: http://kaon2.semanticweb.org/

WWW 2007 / Track: Semantic Web Session: Applications

734

Figure 1: Continuous query answering for LUBM queries. Times (log.) in milliseconds along Y-axis. Update size along X-axis.

For both update types, approximately one to three orders of mag-
nitude performance improvements are achieved over the regular
version of Pellet by using the optimized matching algorithm as
updates are received. This is due to the incremental consistency
checking approach and the reduction of candidate variable bind-
ings. In the evaluation we observed that in all queries, the average
incremental consistency checking time was approximately 7 mil-
liseconds, where the normal consistency checking time in Pellet
was approximately 2,200 milliseconds. This illustrates the utility of
the incremental consistency checking approach for the purpose of
syndication. Additionally, in the three queries the actual query an-
swering time (excluding consistency checking) for the regular ver-
sion of Pellet was on average between 500 to 1,000 milliseconds.
In contrast, using the optimizations presented in this work, the av-
erage query answering time (excluding consistency checking) was
approximately 33 milliseconds; this demonstrates the effectiveness
in the reduction of in the number of candidate variable bindings.

With regard to the individual techniques, the evaluation demon-
strated the following: given an update of size 1, the average time
to apply the completion rules to the updated summary root graph
and localize the affected individuals took approximately 0.23 mil-
liseconds. This clearly confirmed our hypothesis that the expan-
sion rules would be applied to only a very small portion of the
summary root graph. Even more promising was that the number
of affected individuals was proportional to the number of individu-
als referenced in the update; in particular, for updates of size 1, on
average, only 11.144 individuals are affected, amounting to only
.068-percent of the entire KB (for increased update size, the num-
ber of affected individuals scaled proportionally to the number of
individuals referenced in the update). This demonstrates a dramatic
reduction in the number of individuals that needed to be considered
after each update and shows that the overestimation approach may
be usable in practice. Additionally, it can be seen that the opti-
mized version of Pellet outperforms, or performs nearly as well as,
KAON2 in all cases. Even more promising is that in query 13,
Pellet outperforms KAON2 by almost an order of magnitude.

6. DISCUSSION AND FUTURE WORK
Our preliminary results demonstrate that the matching approach

presented in this paper can scale to a few hundred subscriptions un-
der publish frequencies similar to that of the Dow Jones Newswire
(i.e., 10,000 per day∼ approximately 7 per minute). While this may
be an acceptable workload for a wide range of syndication appli-
cations (e.g., filtering financial news feeds within small to medium
investment banks), for larger scale applications, additional research
is necessary. One direction that we plan to investigate is leveraging
the overlap and/or subsumption between registered subscriptions.
Additionally, we plan to investigate distributed OWL-based syndi-
cation frameworks (i.e., more than one broker), as this will provide
increased scalability.

In this paper, we have primarily addressed providing a more
practical approach for finding information matches in OWL-based
syndication systems. As mentioned earlier, there has been exten-
sive work on finding minimal justifications in OWL KBs [15]. Us-
ing such an approach, it is easy to extend information matches to
publication matches. Further, initial results presented in [15] for
finding justifications demonstrates that such an approach may be
practical. In future work, we will explore the usage of these tech-
niques for extending our current work.

We also feel that there is substantial room extending the current
reasoning approaches. This includes developing additional opti-
mizations for reasoning through changing KBs, as well as extend-
ing the current techniques to a larger portion of OWL; in particular,
we feel it is certainly possible to lift the restriction that the KB
be unfoldable, and we will address this in future work. Addition-
ally, while our initial results demonstrate that the overhead of the
advanced form of query impact is acceptable, we plan to further
investigate the tradeoffs between the two variants presented here.

Lastly, in real world domains, it is often the case that conflict-
ing information is disseminated. Depending on the ontologies used
within such a syndication framework, this could lead to inconsis-
tencies. Currently, we are working on developing revision tech-

WWW 2007 / Track: Semantic Web Session: Applications

735

niques for OWL-DL KBs and hope to apply such efforts to resolv-
ing inconsistencies encountered in syndication systems [11].

7. RELATED WORK
There has been substantial research on syndication systems, with

a transition to more expressive approaches for representing sub-
scription requests and published information. These have included
keyword-based approaches (e.g., [19]), attribute-value pairs (e.g.,
[1]), XML (e.g., [4]) and recently RDF-based approaches (e.g.,
[23]). The approach presented here provides increased expressivity
for representing published information (i.e., complex logic descrip-
tions of published content can be defined that are not representable
using previous techniques).

[22, 17] proposes a DL-based approach for syndication in which
DL concepts are used for both subscription requests as well as pub-
lished documents/data. [9] presents a DL-based syndication ap-
proach in which the subscriber registers queries (restricted to sin-
gle, named concepts) that model their interests and published data
is modeled as ABox assertions. [9] also presents two optimiza-
tions. First, the authors propose inducing a partial ordering upon
all registered queries by their subsumption relations; more general
queries are answered first, thereby reducing the number of individ-
uals that must be considered for more specific queries. [9] also
proposes disregarding previous individuals that satisfied registered
queries when data is published. Our approach differs as we sup-
port complex conjunctive queries, allow subscription and published
document expiration times, etc. Additionally, we address the per-
formance bottlenecks of DL-based syndication further.

There has also been substantial work in continuous query an-
swering in relational databases and datalog (e.g., [21, 5]). While
related, the work presented here addresses a more expressive for-
malism.

8. CONCLUSION
In this paper, we have formalized a OWL-based syndication frame-

work in which DL reasoning is the primary means for matching
newly published information with subscription requests. We then
addressed one of the main limitations with such a syndication frame-
work, namely efficiently matching new information with registered
subscriptions; to this end, we formally defined continuous queries
(i.e., subscriptions) for DL KBs and presented a novel algorithm
for continuous query answering. Lastly, an evaluation of the query
answering approach for syndication purposes has been presented,
demonstrating dramatic performance improvements.

We would like to thank Jennifer Golbeck, Yarden Katz, Vladimir
Kolovski, Bijan Parsia, Evren Sirin, and Taowei Wang for all of
their contributions to this work. This work was supported by grants
from Fujitsu, Lockheed Martin, NTT Corp., Kevric Corp., SAIC,
the National Science Foundation, the National Geospatial - Intelli-
gence Agency, DARPA, US Army Research Laboratory, and NIST.

9. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching events in a content-based
subscription system. InSymposium on Principles of
Distributed Computing, 1999.

[2] F. Baader and B. Hollunder. Embedding defaults into
terminological representation systems.Journal of Automated
Reasoning, 14:149–180, 1995.

[3] F. Baader and W. Nutt. Basic description logics. InThe
Description Logic Handbook: Theory, Implementation, and
Applications, pages 43–95. 2003.

[4] Y. Diao, S. Rizvi, and M. Franklin. Towards an internet-scale
xml dissemination service. InProc. of Int. Conf. on Very
Large Data Bases, 2004.

[5] G. Dong and R. W. Topor. Incremental evaluation of datalog
queries. InProc. of Int. Conf. on Database Theory, 1992.

[6] G. Flouris, D. Plexousakis, and G. Antoniou. On applying
the agm theory to dls and owl. InProc. of Int. Semantic Web
Conf., 2005.

[7] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive
query answering for the description logicSHIQ. In Proc. of
Int. Joint Conf. on Artificial Intelligence, 2007.

[8] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl
knowledge base systems.Journal of Web Semantics,
3(2):158–182, 2005.

[9] V. Haarslev and R. M̈oller. Incremental query answering for
implementing document retrieval services. InProc. of Int.
Workshop on Description Logics, 2003.

[10] C. Halaschek-Wiener and J. Hendler. Expressive logic-based
syndication on the web. InUMIACS Technical Report.
http://www.mindswap.org/∼chris/publications/Syndication-
OWL-TR2006.pdf.

[11] C. Halaschek-Wiener, Y. Katz, and B. Parsia. Belief base
revision for expressive description logics. InProc. of
Workshop on OWL Experiences and Directions, 2006.

[12] C. Halaschek-Wiener, B. Parsia, and E. Sirin. Description
logic reasoning with syntactic updates. InProc. of Int. Conf.
on Ontologies, Databases, and Applications of Semantics,
2006.

[13] I. Horrocks and U. Sattler. A tableaux decision procedure for
SHOIQ. InProc. of Int. Joint Conf. on Artificial Intelligence,
2005.

[14] I. Horrocks and S. Tessaris. Querying the semantic web: a
formal approach. InProc. of Int. Semantic Web Conf., 2002.

[15] A. Kalyanpur. Debugging and repair of owl ontologies. In
Ph.D. Dissertation, University of Maryland, College Park,
2006.

[16] L. Lakshmanan and S. Parthasarathy. On efficient matching
of streaming xml documents and queries. InProc. of Int.
Conf. on Extending Database Technology, 2002.

[17] L. Li and I. Horrocks. A software framework for
matchmaking based on semantic web technology. InProc. of
Int. World Wide Web Conf., 2003.

[18] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating
description logic aboxes. InInt. Conf. of Principles of
Knowledge Representation and Reasoning, 2006.

[19] B. Oki, M. Pfluegl, and D. Skeen. The information bus: An
architecture for extensible distributed systems. InProc. of
Symposium on Operating Systems Principles, 1993.

[20] M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data
complexity for conjunctive query answering in expressive
description logics. InProc. of Nat. Conf. on Artificial
Intelligence, 2006.

[21] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous queries over append-only databases. InProc. of
Int. Conf. on Management of Data, 1992.

[22] M. Uschold, P. Clark, F. Dickey, C. Fung, S. Smith, S. U. M.
Wilke, S. Bechhofer, and I. Horrocks. A semantic infosphere.
In Proc. of Int. Semantic Web Conf., 2003.

[23] J. Wang, B. Jin, and J. Li. An ontology-based
publish/subscribe system. InProc. of Int. Conf. on
Middleware, 2004.

WWW 2007 / Track: Semantic Web Session: Applications

736

