

GraSSML: Accessible Smart Schematic Diagrams for All
Z. BEN FREDJ

Oxford Brookes University
Department of Computing

Wheatley Campus, OX33 1HX
+44 (0)1865 485603

zbenfredj@brookes.ac.uk

D.A. DUCE
Oxford Brookes University
Department of Computing

Wheatley Campus, OX33 1HX
+44 (0)1865 484528

daduce@brookes.ac.uk
ABSTRACT
Graphical representations are a powerful way of conveying
information. Their use has made life much easier for most sighted
users, but people with disabilities or users who work in
environments where visual representations are inappropriate
cannot access information contained in graphics, unless
alternative descriptions are included.

We describe an approach called Graphical Structure Semantic
Markup Languages (GraSSML) which aims at defining high-level
diagram description languages which capture the structure and the
semantics of a diagram and enable the generation of accessible
and “smart” presentations in different modalities such as speech,
text, graphic, etc. The structure and the semantics of the diagram
are made available at the creation stage. This offers new
possibilities for allowing Web Graphics to become “smart”.

Categories and Subject Descriptors
H.5.3 [Group Organization Interfaces] Web-based interaction,
I.3.6 [Methodology and Techniques]: Languages, K.4.2 [Social
Issues] Assistive technologies for persons with disabilities.

General Terms
Design, Experimentation, Human Factors, Languages, Theory,
Legal Aspects.

Keywords
Accessibility, Smart Diagrams, Structure, Semantics, XML, SVG,
Semantic Web, RDF, OWL, SPARQL.

1. INTRODUCTION
Diagrams are a fundamental component in the exposition of
scientific research and are unavoidable in professional life.
Despite their importance, not much has been done to provide
accessibility support for information of this kind. To allow full
access to the web it is also important that people with disabilities
can create accessible web content containing accessible web
graphics. It is important to understand that accessibility is not
only for people with obvious disabilities but also for people who
simply access information and learn in different ways.

The emergence of SVG has changed the way 2D graphics are
created on the web. SVG offers many advantages and has

introduced accessibility features that raster formats do not offer
[1]. When using SVG, information about the diagram is available
to the browser in terms of the objects it is composed of.
Nevertheless, a number of limitations remain as it only captures
diagrams at a low level of abstraction. It is more a “final form”
presentation, which involves some drawbacks in the direct
creation, modification and access to complex, highly structured,
diagrams.

The next section describes the problem in more detail and
presents the limitations of SVG and of some of the approaches
previously taken to resolve the problem of graphic accessibility.
Then we present our approach to the problem which generates
presentations from high level descriptions. The following section
discusses the current state of the GraSSML development and
system architecture. The final section contains conclusions and
thoughts on future work.

2. PROBLEM AND RELATED WORK
Many workers have explored different methods to make graphics
accessible to blind or visually impaired people by representing
graphics through an auditory interface, tactile drawings, text
description, etc. Although these approaches partially address the
accessibility problem of graphics, they present some limitations.
The approaches taken by the “Blind Information System” (BIS)
[2] and “Graphical User Interfaces for Blind People” (GUIB) [3]
projects depend on human intervention by a moderator, not
necessarily the author of the graphic. In both cases the resulting
description of the picture depends on the analysis and indexing of
a third party. It is an important responsibility for the moderator
who decides what information to convey and thus indirectly
imposes a view when the picture is being read (e.g. inadvertently
omitting important information).
The TeDUB project [4] (Technical Drawings Understanding for
the Blind) explored the possibility of a semi-automatic analysis of
diagrams. Their approach for the presentation and navigation of
graphical information offers many advantages for blind users. But
the (semi-) automatic analysis of the diagram information might
produce wrong results and might need active human intervention
and time.
The W3C Recommendation for 2D graphics is SVG. For the
remainder of this paper we focus on approaches that use SVG as
the presentation format. There are profiles of SVG adapted to the
needs of mobile devices and technologies. SVG presents many
advantages and provides many accessibility benefits [1].
However, some important issues still remain to be addressed.
SVG does not capture diagrams at a high level of abstraction. It is
a "final form" presentation, which involves some drawbacks in
the direct creation of complex, highly structured, diagrams. It is
difficult at this level to handle the resizing and positioning of
different shapes in complex diagrams. A simple modification such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A at WWW2006, 23rd-26th May 2006, Edinburgh, UK
Copyright 2006 ACM 1-59593-281-x/06/05...$5.00.

Sets of rules

MyLanguage
(Domain Specific language)

Semantic Level Sets of rules: S to S

Presentation Level: Accessibility

Structure Level

ZineML (Generic language)

Graphical
Representation

Textual
Representation

Other
Representations

Sets of rules: S to P

as changing the alignment from vertical to horizontal can be
awkward. SVG does not allow flexible readjustment of layout in
response to viewer requirements and the viewing environment,
such as different screen formats (PDA, mobile phones etc.).
The issue is that the intentions of the author are not totally
captured. The structure of the SVG may reflect the sequence of
operations used to create the diagram, rather than the intrinsic
object structure within the diagram itself. This is likely to be the
case for diagrams created with a general-purpose drawing tool.
Although SVG stores structural information about graphical
shapes as an integral part of the image and allows metadata to be
attached to primitives, there is little real scope for generating
alternative presentations from the description at this level. An
additional issue is that an SVG document contains the semantics
of the diagram only implicitly. The “alternative equivalents”,
which allow the author to include a text description for each
logical component and a text title to explain the component's role
in the diagram, could become tedious for the creation of complex
diagrams. If the metadata added by the author are not accurate
enough, the semantics of the diagram could differ from the
description obtained from the metadata.
Some research groups have explored the accessibility features of
SVG and have attempted to address some of the SVG limitations.
The “Science Access Project” research group has successfully
explored many accessibility features of SVG in their ViewPlus
project [5] but it also has identified some of its limitations [6]:
some SVG documents become less accessible when created
without <title> and <desc> elements and some are very badly
structured and therefore less informative. The ViewPlus project
has a good approach by exploring the information behind the
picture but the solutions proposed to overcome SVG limitations
need too much effort in adding information and/or reorganizing it.
It can be tedious and time consuming. It illustrates the fact that
SVG is too low level and not informative enough regarding the
structure of the graphical information.
An extension to SVG, called Constraint Scalable Vector Graphics
(CSVG) [7], has been proposed. It partially addresses some of the
SVG limitations by proposing additional capabilities which allow
alternate layouts for the same logical group of components in a
diagram. But whilst permitting a more flexible description of
figures, CSVG remains very close to SVG and still captures
diagrams at a similar low level of abstraction.
The SVG linearizer tool [8] generates a textual linear
representation of the content of an SVG file by using a metadata
vocabulary describing it. The author has to describe the SVG
content using this RDF vocabulary and to add textual descriptions
to all elements that constitute primary RDF resources. Then, from
this information plus information contained in the SVG file itself,
an HTML file is generated. This operation can be tedious and not
very efficient in very complex diagrams and adding the RDF
annotations is an onerous task for the author. This method is too
dependent on the creator’s patience and willingness to produce
appropriate metadata.
These previously presented approaches that we categorize as
“bottom-up approaches” have been looking at the problem upside
down. They start with the graphical representation of the diagram.
The diagram is analyzed and interpreted by a predefined system
and/or a moderator (who is not usually the creator of the
diagram). The latter is required to add “metadata” to help
understand the information. Some of these approaches involve

writing difficult programs in order to “discover” the structure or
semantics of the graphics.

In 1997, John A. Gardener [9] gave an overview of the concepts
of “smart graphics” (information behind a picture) and intelligent
graphics browsers for accessing such information. He highlighted
the fact that “Nearly every part of smart graphics technology
exists today, but to our knowledge there is no complete package
that incorporates everything necessary to author a smart picture,
incorporate it into an electronic document, and display it
intelligently”. Our system GraSSML aims, by means of its family
of languages, to be such a package by providing access to this
most valuable “information behind the diagram”. Our hypothesis
in the GraSSML approach is that many of the limitations involved
in current approaches can be overcome if the information on the
structure and the semantics of the graphics were made “part of the
graphics”, i.e. take a top-down approach.

3. THE GraSSML APPROACH
Our approach aims at facilitating the creation, modification,
access and adaptation of diagrams as well as making the
information “behind” the diagram available at the creation stage.
The availability of this information is then explored to generate
alternative representations improving accessibility of diagrams.

The main idea behind our approach is to reduce a task to a
sequence of transformations between inputs and outputs expressed
in different “Little Languages” [10]: “The GraSSML family of
Languages” (Figure 1).

Figure 1: The Levels of GraSSML

An important aspect of this project is concerned with the syntax
and semantics of diagrams. In natural language, words can be
mapped into a set of meanings whereas in a visual language,
geometric objects do not have a unique semantic interpretation.
There are a very large variety of diagrammatic notations [11].
There are no universal visual conventions and each person
interprets graphical information using his own mental schema
and/ or imagination. For a computer life is not so easy. A
computer needs a set of formal representational conventions to
carry out this interpretation. Each domain has its own notation,
syntax and semantic rules. A set of syntactic and semantic rules
needs to be defined. As a starting point, we should analyze a wide
range of diagrams in a specific domain in order to develop a
diagrammatic semantic grammar. Following this specific
predefined grammar, the user should be able to define the syntax
and semantics of his diagram. Technologies emerging from the
Semantic Web Activity will be a base to define such a grammar
(RDF / RDFS / OWL).

<ZineML type=”Hierarchy”>
 <box> Director John
 <box> IT Manager Peter
 <box> Team Leader System Bob </box>
 <box> Team Leader Development David
 <box> IT Developer Sarah </box>
 <box> IT Developer Linda </box>
 <box> IT Developer Joe</box>
 </box>
 </box>
 <box> Finance Manager Sue </box>
 </box>
</ZineML>

ZineML document

<Org_Hierarchy author=”Z. BEN FREDJ”
date=”February 2005” title=”My business Chart”
desc=”Organisation chart of my business”>
<Director name=”John”>
 <ITManager name=”Peter”>
 <TeamLeaderSystem name=”Bob”/>
 <TeamLeaderDevelopment name=”David”>
 <ITDeveloper name=”Sarah”/>
 <ITDeveloper name=”Linda”/>
 <ITDeveloper name=”Joe”/>
 </TeamLeaderDevelopment>
 </ITManager>
 <FinanceManager name=”Sue”/>
</Director>
</Org_Hierarchy>

MyLanguage document (Org hierarchy)

Director
John

IT Manager
Peter

Finance
Manager

Sue

Team Leader
System

Bob

Team Leader
Development

David

IT Developer
Sarah

IT Developer
Joe

IT Developer
Linda

Structure Level:
The box labelled “Director John” is
connected to the box labelled
“IT_Manager Peter” and the box labelled
“Finance Manager Sue”.

Semantic Level:
The director named John is at the top of
the organisational chart. He manages the
IT Manager named Peter and the Finance
Manager named Sue.

Textual Representation

Structure Level

Semantic Level Sets of rules
S to S

Sets of rules
S to P

Sets of rules
S to P

Presentation Level

There are many classification schemes for diagrams. In this work
we have used the structural taxonomy proposed by Lohse [12] and
have chosen the class of structural diagrams (which includes
process and hierarchical diagrams) to study in this project.

4. THE GraSSML SYSTEM
4.1 A Simple Example

4.2 The GraSSML Family of Languages
4.2.1 Structure Level: ZineML
 “ZineML” aims to be at a higher level than SVG by representing
the structure of the diagram. It facilitates the creation and
modification of diagrams. ZineML documents aspire to be
readable by humans and to give good overviews of diagram
structures. The language seeks to be rich enough to allow
accessible alternatives of the structural representation of a
diagram.

ZineML postulates a set of basic shapes selected to cover a wide
range of possibilities for structured diagrams common in different
domains (e.g. business, computing…). At this level of abstraction
the language designed “ZineML” is not domain dependent, but

proposes some options to express and apply rule sets when
creating the diagrams. These rule sets could be used to tailor the
diagram specifically to a domain.

ZineML offers the possibility to determine and to adjust positions
and sizes semi-automatically, with a minimum of effort from the
author. The derivation of graphical and other representations from
ZineML is done in accordance with predefined rule sets (Figure 2)
called “Sets of rules S to P” (Structure to Presentation).

4.2.2 Semantic Level: MyLanguage
 “MyLanguage” is the XML language (e.g. XML Schema) used to
capture the semantic intent behind the diagram. It does not aim to
be universal at this level but domain-dependent, hence the name!
It has to be applied to a specific domain where clear conventions
are followed when creating diagrams (e.g. Organization charts,
UML).

MyLanguage does not make any commitment to graphical
presentation, but aims to capture the concepts and relationships
between concepts (ontology) that are to be expressed in pictorial
or other representational form. At this level, “Who knows better
than the authors?” We should bear in mind that “A diagram is
worth a thousand words”. Indeed, the semantics of the diagram
can be complex, and without the help of the author the
interpretation generated may be both verbose and shallow in the
sense that the author is the one who knows “exactly” what the
main message behind the diagram is and therefore can give
concise information.

The information concerning the different notations used, the
possible relationships between them and the meaning behind each
of them, is the information which is required in order to create
such a language. Hence, it is necessary to first study the domain
and the class of the diagrams with the aim of identifying what
concepts and properties these diagrams seek to represent in the
domain. As a result of this study a particular “MyLanguage” (e.g.
Org_hierarchy) is created. This language aspires to be an intuitive
domain specific language; it employs the notations and concepts
familiar to practitioners of the domain and by doing so it makes
the semantics explicit to the user. Consequently a domain expert
can easily understand the information. Even if all the information
needed has been gathered, an important issue remains unsolved:
the semantics is only implicit for the computer. Indeed, XML
covers only the syntactic level and does not provide any means of
talking about the semantics of data. There is a need to make the
semantics explicit to the computer.

There is an obvious link to activity in the Semantic Web area
concerned with the expression of subject ontologies and
relationships expressed over terms defined in ontologies (RDF /
RDFS / OWL). We are currently working on creating and using
ontologies to make the semantics of the diagrams explicit and to
underpin “MyLanguage”.

Along with the specification of a particular MyLanguage,
notational conventions are created. The notational conventions
govern the diagrammatic representation of the elements of
MyLanguage, and are captured in sets of rules governing the
generation of ZineML from MyLanguage (Figure 2: Sets of rules
“S to S”). Example: Director (an element in Org_hierarchy) will
be represented by a box filled in yellow and a centered label.

Figure 2: The Organizational Chart example

4.2.3 Presentation Level: SVG, XHTML…
The availability of the information “behind the graphic” allows us
to generate alternative representations. In order to explore this
information in the best possible way and to provide
representations as accessible as possible we refer to studies on
what kind of information is needed and how to describe graphics
textually or verbally (e.g. [13] [14]).

 Graphical representation (Figure 2): SVG is used as the
graphical output renderer at this level. For complex diagrams we
are aiming at allowing an interactive exploration of the diagram
by using some of SVG’s facilities and the available information
concerning the structure and semantics of the diagram (the user
can hide some details).

 Textual representation (Figure 2): a Verbalization Model has
been implemented. It allows the generation of a textual
representation of the structure and the semantics of the diagram.

 Query System: The structure and the semantics of the diagram
being available, it becomes possible to express queries
concerning specific parts of a diagram in novel ways: “smart
diagrams” become a reality. At a later stage we aim at
developing the query system based on the explicit structure and
semantics of the diagram. Example (Figure 2): What is the total
number of employees reporting to Peter? Who is reporting to
Peter? Show me the levels that directly report to Peter?

4.3 Implementation
Implementation of ZineML for two classes of diagrams: process
and hierarchical diagrams is in hand. The Java Programming
Language has been used to implement the presentation algorithms
aiming at generating the graphical representation of the diagram
(SVG). The graphical representations of ZineML and
MyLanguage are done by applying XSLT transformations to each
document by respecting rule sets. The verbalization model
allowing the generation of the structure and semantic of the
diagram based on the syntax of the corresponding XML language
used (ZineML or MyLanguage) has been implemented using an
XSLT Transformation on ZineML and MyLanguage. The output
is an XHTML document containing the textual representation of
the structure and the semantic of the diagram. Other
functionalities of GraSSML are at the design stage ready for
implementation. Once the implementation of the first prototype is
completed, experiments will be carried out in order to evaluate the
usability and accessibility of the system.

5. CONCLUSION AND FUTURE WORK
Graphics on the Web have significantly improved but a number of
issues still remain unsolved. This paper has outlined these issues
and has presented some related work aiming at resolving them.
These only address some of the problems and they emphasize the
need to make the graphical information (information on the
structure and the semantics of the graphics) part of the graphic.

We have looked at the problem of creation, modification, access
and exploration of Web graphics from a different perspective.
Using the GraSSML system, the semantic and structural
information is made available at the creation stage. The
availability of this information offers new possibilities. Web
Graphics become “smart”, they carry their knowledge with them,
and intrinsically they know their structure (ZineML) and
semantics (MyLanguage). Any application smart enough to

access, explore and present this knowledge in the right way
should be able to propose solutions for identified problems (e.g.
adaptive and accessible graphics for all). This could substantially
improve the accessibility of web graphics. GraSSML could be the
starting point for many projects currently aiming to access,
present, explore and adapt graphical information [15] [16].

6. ACKNOWLEDGMENTS
Financial support for ZBF from Oxford Brookes University is
gratefully acknowledged.

7. REFERENCES
[1] Charles McCathieNevile and Marja-Riitta Koivunen,

“Accessibility Features of SVG”,
http://www.w3.org/TR/SVG-access/, 2000.

[2] Z. Mikovec, P. Slavik, System for Picture Interpretation for
Blind.http://cs.felk.cvut.cz/~xmikovec/bis/interact99/

[3] Martin Kurze et al., “New Approaches for Accessing
Different Classes of Graphics by Blind People”, 2nd TIDE
Congress, 268-272, Paris, Amsterdam: IOS Press 1995.

[4] M. Horstmann et al., “TEDUB: Automatic interpretation and
presentation of technical diagrams for blind people”, CVHI,
2004.

[5] Vladimir Bulatov, John A. Gardner, “Making Graphics
Accessible”, SVG Open, 2004.

[6] John A. Gardner, Vladimir Bulatov, “Smart Figures, SVG,
and Accessibility”, Proceeding 2001 CSUN International
Conference on technology and persons with Disabilities, Los
Angeles, CA, March 2001.

[7] G.J. Badros, J.J. Tirtowidjojo, K. Marriott, B. Meyer, W.
Portnoy, A. Borning, “A Constraint Extension to Scalable
Vector Graphics”, Tenth International World Wide Web
Conference, WWW10, Hong Kong 2001.

[8] I. Herman and D. Dardailler. “SVG Linearization and
Accessibility”, Computer Graphics Forum, 21(4), 2002.

[9] John A. Gardner & al., "The Problem of Accessing Non-
Textual Information On The Web", Proceedings of the 1997
Conference of the W3 Consortium, CA, April, 1997.

[10] J.L. Bentley, “Little Languages”, CACM, 29(8), 1986.
[11] E. Tufte, “The Visual Display of Quantitative Information”,

Graphics Press, 1983, and Edward Tufte, “Envisioning
Information”, Graphics Press, 1990.

[12] G.L. Lohse, K. Biolsi, N. Walker and H.H. Rueter, “A
Classification of visual representations”, CACM, 37(12),
1994

[13] Web Accessibility for All, “How to create Descriptive Text
for Graphs, Charts & other Diagrams”,
http://www.cew.wisc.edu/accessibility/tutorials/descriptionTutorial.htm

[14] M. Cornelis and K Krikhaar, “Guidelines for Describing
Study Literature”, FNB Amsterdam, 2001.

[15] K. Marriott, et al., “Towards flexible graphical
communication using adaptive diagrams”. Advances in
Computer Science-ASIAN'04, pages 380-394., Dec. 2004.

[16] D.J. Duke, Drawing Attention to Meaning, Adaptive
Displays Conference, 2004.

