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ABSTRACT 
Graphical representations are a powerful way of conveying 
information. Their use has made life much easier for most sighted 
users, but people with disabilities or users who work in 
environments where visual representations are inappropriate 
cannot access information contained in graphics, unless 
alternative descriptions are included.  

We describe an approach called Graphical Structure Semantic 
Markup Languages (GraSSML) which aims at defining high-level 
diagram description languages which capture the structure and the 
semantics of a diagram and enable the generation of accessible 
and “smart” presentations in different modalities such as speech, 
text, graphic, etc. The structure and the semantics of the diagram 
are made available at the creation stage. This offers new 
possibilities for allowing Web Graphics to become “smart”. 

Categories and Subject Descriptors 
H.5.3 [Group Organization Interfaces] Web-based interaction, 
I.3.6 [Methodology and Techniques]: Languages, K.4.2 [Social 
Issues] Assistive technologies for persons with disabilities.  

General Terms 
Design, Experimentation, Human Factors, Languages, Theory, 
Legal Aspects. 

Keywords 
Accessibility, Smart Diagrams, Structure, Semantics, XML, SVG, 
Semantic Web, RDF, OWL, SPARQL. 

1. INTRODUCTION 
Diagrams are a fundamental component in the exposition of 
scientific research and are unavoidable in professional life. 
Despite their importance, not much has been done to provide 
accessibility support for information of this kind. To allow full 
access to the web it is also important that people with disabilities 
can create accessible web content containing accessible web 
graphics. It is important to understand that accessibility is not 
only for people with obvious disabilities but also for people who 
simply access information and learn in different ways. 

The emergence of SVG has changed the way 2D graphics are 
created on the web. SVG offers many advantages and has 

introduced accessibility features that raster formats do not offer 
[1]. When using SVG, information about the diagram is available 
to the browser in terms of the objects it is composed of. 
Nevertheless, a number of limitations remain as it only captures 
diagrams at a low level of abstraction. It is more a “final form” 
presentation, which involves some drawbacks in the direct 
creation, modification and access to complex, highly structured, 
diagrams.  

The next section describes the problem in more detail and 
presents the limitations of SVG and of some of the approaches 
previously taken to resolve the problem of graphic accessibility. 
Then we present our approach to the problem which generates 
presentations from high level descriptions. The following section 
discusses the current state of the GraSSML development and 
system architecture. The final section contains conclusions and 
thoughts on future work. 

2. PROBLEM AND RELATED WORK 
Many workers have explored different methods to make graphics 
accessible to blind or visually impaired people by representing 
graphics through an auditory interface, tactile drawings, text 
description, etc. Although these approaches partially address the 
accessibility problem of graphics, they present some limitations.  
The approaches taken by the “Blind Information System” (BIS) 
[2] and “Graphical User Interfaces for Blind People” (GUIB) [3] 
projects depend on human intervention by a moderator, not 
necessarily the author of the graphic. In both cases the resulting 
description of the picture depends on the analysis and indexing of 
a third party. It is an important responsibility for the moderator 
who decides what information to convey and thus indirectly 
imposes a view when the picture is being read (e.g. inadvertently 
omitting important information). 
The TeDUB project [4] (Technical Drawings Understanding for 
the Blind) explored the possibility of a semi-automatic analysis of 
diagrams. Their approach for the presentation and navigation of 
graphical information offers many advantages for blind users. But 
the (semi-) automatic analysis of the diagram information might 
produce wrong results and might need active human intervention 
and time.  
The W3C Recommendation for 2D graphics is SVG. For the 
remainder of this paper we focus on approaches that use SVG as 
the presentation format. There are profiles of SVG adapted to the 
needs of mobile devices and technologies. SVG presents many 
advantages and provides many accessibility benefits [1]. 
However, some important issues still remain to be addressed.  
SVG does not capture diagrams at a high level of abstraction. It is 
a "final form" presentation, which involves some drawbacks in 
the direct creation of complex, highly structured, diagrams. It is 
difficult at this level to handle the resizing and positioning of 
different shapes in complex diagrams. A simple modification such 
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as changing the alignment from vertical to horizontal can be 
awkward. SVG does not allow flexible readjustment of layout in 
response to viewer requirements and the viewing environment, 
such as different screen formats (PDA, mobile phones etc.).  
The issue is that the intentions of the author are not totally 
captured. The structure of the SVG may reflect the sequence of 
operations used to create the diagram, rather than the intrinsic 
object structure within the diagram itself. This is likely to be the 
case for diagrams created with a general-purpose drawing tool.  
Although SVG stores structural information about graphical 
shapes as an integral part of the image and allows metadata to be 
attached to primitives, there is little real scope for generating 
alternative presentations from the description at this level. An 
additional issue is that an SVG document contains the semantics 
of the diagram only implicitly. The “alternative equivalents”, 
which allow the author to include a text description for each 
logical component and a text title to explain the component's role 
in the diagram, could become tedious for the creation of complex 
diagrams. If the metadata added by the author are not accurate 
enough, the semantics of the diagram could differ from the 
description obtained from the metadata. 
Some research groups have explored the accessibility features of 
SVG and have attempted to address some of the SVG limitations. 
The “Science Access Project” research group has successfully 
explored many accessibility features of SVG in their ViewPlus 
project [5] but it also has identified some of its limitations [6]: 
some SVG documents become less accessible when created 
without <title> and <desc> elements and some are very badly 
structured and therefore less informative. The ViewPlus project 
has a good approach by exploring the information behind the 
picture but the solutions proposed to overcome SVG limitations 
need too much effort in adding information and/or reorganizing it. 
It can be tedious and time consuming. It illustrates the fact that 
SVG is too low level and not informative enough regarding the 
structure of the graphical information.  
An extension to SVG, called Constraint Scalable Vector Graphics 
(CSVG) [7], has been proposed. It partially addresses some of the 
SVG limitations by proposing additional capabilities which allow 
alternate layouts for the same logical group of components in a 
diagram. But whilst permitting a more flexible description of 
figures, CSVG remains very close to SVG and still captures 
diagrams at a similar low level of abstraction. 
The SVG linearizer tool [8] generates a textual linear 
representation of the content of an SVG file by using a metadata 
vocabulary describing it. The author has to describe the SVG 
content using this RDF vocabulary and to add textual descriptions 
to all elements that constitute primary RDF resources. Then, from 
this information plus information contained in the SVG file itself, 
an HTML file is generated. This operation can be tedious and not 
very efficient in very complex diagrams and adding the RDF 
annotations is an onerous task for the author. This method is too 
dependent on the creator’s patience and willingness to produce 
appropriate metadata.   
These previously presented approaches that we categorize as 
“bottom-up approaches” have been looking at the problem upside 
down. They start with the graphical representation of the diagram. 
The diagram is analyzed and interpreted by a predefined system 
and/or a moderator (who is not usually the creator of the 
diagram). The latter is required to add “metadata” to help 
understand the information. Some of these approaches involve 

writing difficult programs in order to “discover” the structure or 
semantics of the graphics.  

In 1997, John A. Gardener [9] gave an overview of the concepts 
of “smart graphics” (information behind a picture) and intelligent 
graphics browsers for accessing such information. He highlighted 
the fact that “Nearly every part of smart graphics technology 
exists today, but to our knowledge there is no complete package 
that incorporates everything necessary to author a smart picture, 
incorporate it into an electronic document, and display it 
intelligently”. Our system GraSSML aims, by means of its family 
of languages, to be such a package by providing access to this 
most valuable “information behind the diagram”. Our hypothesis 
in the GraSSML approach is that many of the limitations involved 
in current approaches can be overcome if the information on the 
structure and the semantics of the graphics were made “part of the 
graphics”, i.e. take a top-down approach.  

3. THE GraSSML APPROACH 
Our approach aims at facilitating the creation, modification, 
access and adaptation of diagrams as well as making the 
information “behind” the diagram available at the creation stage. 
The availability of this information is then explored to generate 
alternative representations improving accessibility of diagrams. 

The main idea behind our approach is to reduce a task to a 
sequence of transformations between inputs and outputs expressed 
in different “Little Languages” [10]: “The GraSSML family of 
Languages” (Figure 1).  

 

 

 

 

 

 

 

Figure 1: The Levels of GraSSML 

An important aspect of this project is concerned with the syntax 
and semantics of diagrams. In natural language, words can be 
mapped into a set of meanings whereas in a visual language, 
geometric objects do not have a unique semantic interpretation. 
There are a very large variety of diagrammatic notations [11]. 
There are no universal visual conventions and each person 
interprets graphical information using his own mental schema 
and/ or imagination. For a computer life is not so easy. A 
computer needs a set of formal representational conventions to 
carry out this interpretation. Each domain has its own notation, 
syntax and semantic rules. A set of syntactic and semantic rules 
needs to be defined. As a starting point, we should analyze a wide 
range of diagrams in a specific domain in order to develop a 
diagrammatic semantic grammar. Following this specific 
predefined grammar, the user should be able to define the syntax 
and semantics of his diagram. Technologies emerging from the 
Semantic Web Activity will be a base to define such a grammar 
(RDF / RDFS / OWL).  



 

<ZineML type=”Hierarchy”> 
  <box> Director John 
    <box> IT Manager Peter 
      <box> Team Leader System Bob </box> 
      <box> Team Leader Development David 
        <box> IT Developer Sarah </box> 
        <box> IT Developer Linda </box> 
        <box> IT Developer Joe</box> 
      </box> 
    </box> 
    <box> Finance Manager Sue </box> 
  </box> 
</ZineML> 

ZineML document

<Org_Hierarchy author=”Z. BEN FREDJ” 
date=”February 2005” title=”My business Chart” 
desc=”Organisation chart of my business”> 
<Director name=”John”> 
     <ITManager name=”Peter”> 
          <TeamLeaderSystem name=”Bob”/> 
          <TeamLeaderDevelopment name=”David”> 
               <ITDeveloper name=”Sarah”/> 
               <ITDeveloper name=”Linda”/> 
               <ITDeveloper name=”Joe”/> 
          </TeamLeaderDevelopment> 
     </ITManager> 
     <FinanceManager name=”Sue”/> 
</Director> 
</Org_Hierarchy> 

MyLanguage document (Org hierarchy) 
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Structure Level: 
The box labelled “Director John” is 
connected to the box labelled 
“IT_Manager Peter” and the box labelled 
“Finance Manager Sue”. 
 
Semantic Level: 
The director named John is at the top of 
the organisational chart. He manages the 
IT Manager named Peter and the Finance 
Manager named Sue. 
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There are many classification schemes for diagrams. In this work 
we have used the structural taxonomy proposed by Lohse [12] and 
have chosen the class of structural diagrams (which includes 
process and hierarchical diagrams) to study in this project. 

4. THE GraSSML SYSTEM 
4.1 A Simple Example 

 

 
 

 

4.2 The GraSSML Family of Languages 
4.2.1 Structure Level: ZineML 
 “ZineML” aims to be at a higher level than SVG by representing 
the structure of the diagram. It facilitates the creation and 
modification of diagrams. ZineML documents aspire to be 
readable by humans and to give good overviews of diagram 
structures. The language seeks to be rich enough to allow 
accessible alternatives of the structural representation of a 
diagram. 

ZineML postulates a set of basic shapes selected to cover a wide 
range of possibilities for structured diagrams common in different 
domains (e.g. business, computing…). At this level of abstraction 
the language designed “ZineML” is not domain dependent, but 

proposes some options to express and apply rule sets when 
creating the diagrams. These rule sets could be used to tailor the 
diagram specifically to a domain. 

ZineML offers the possibility to determine and to adjust positions 
and sizes semi-automatically, with a minimum of effort from the 
author. The derivation of graphical and other representations from 
ZineML is done in accordance with predefined rule sets (Figure 2) 
called “Sets of rules S to P” (Structure to Presentation). 

4.2.2 Semantic Level: MyLanguage 
 “MyLanguage” is the XML language (e.g. XML Schema) used to 
capture the semantic intent behind the diagram. It does not aim to 
be universal at this level but domain-dependent, hence the name! 
It has to be applied to a specific domain where clear conventions 
are followed when creating diagrams (e.g. Organization charts, 
UML). 

MyLanguage does not make any commitment to graphical 
presentation, but aims to capture the concepts and relationships 
between concepts (ontology) that are to be expressed in pictorial 
or other representational form. At this level, “Who knows better 
than the authors?” We should bear in mind that “A diagram is 
worth a thousand words”. Indeed, the semantics of the diagram 
can be complex, and without the help of the author the 
interpretation generated may be both verbose and shallow in the 
sense that the author is the one who knows “exactly” what the 
main message behind the diagram is and therefore can give 
concise information.  

The information concerning the different notations used, the 
possible relationships between them and the meaning behind each 
of them, is the information which is required in order to create 
such a language. Hence, it is necessary to first study the domain 
and the class of the diagrams with the aim of identifying what 
concepts and properties these diagrams seek to represent in the 
domain. As a result of this study a particular “MyLanguage” (e.g. 
Org_hierarchy) is created. This language aspires to be an intuitive 
domain specific language; it employs the notations and concepts 
familiar to practitioners of the domain and by doing so it makes 
the semantics explicit to the user. Consequently a domain expert 
can easily understand the information. Even if all the information 
needed has been gathered, an important issue remains unsolved: 
the semantics is only implicit for the computer. Indeed, XML 
covers only the syntactic level and does not provide any means of 
talking about the semantics of data. There is a need to make the 
semantics explicit to the computer.  

There is an obvious link to activity in the Semantic Web area 
concerned with the expression of subject ontologies and 
relationships expressed over terms defined in ontologies (RDF / 
RDFS / OWL).  We are currently working on creating and using 
ontologies to make the semantics of the diagrams explicit and to 
underpin “MyLanguage”. 

Along with the specification of a particular MyLanguage, 
notational conventions are created. The notational conventions 
govern the diagrammatic representation of the elements of 
MyLanguage, and are captured in sets of rules governing the 
generation of ZineML from MyLanguage (Figure 2: Sets of rules 
“S to S”). Example: Director (an element in Org_hierarchy) will 
be represented by a box filled in yellow and a centered label. 

Figure 2: The Organizational Chart example 



 

4.2.3 Presentation Level: SVG, XHTML… 
The availability of the information “behind the graphic” allows us 
to generate alternative representations. In order to explore this 
information in the best possible way and to provide 
representations as accessible as possible we refer to studies on 
what kind of information is needed and how to describe graphics 
textually or verbally (e.g. [13] [14]).  

 Graphical representation (Figure 2): SVG is used as the 
graphical output renderer at this level. For complex diagrams we 
are aiming at allowing an interactive exploration of the diagram 
by using some of SVG’s facilities and the available information 
concerning the structure and semantics of the diagram (the user 
can hide some details). 

 Textual representation (Figure 2): a Verbalization Model has 
been implemented. It allows the generation of a textual 
representation of the structure and the semantics of the diagram.   

 Query System: The structure and the semantics of the diagram 
being available, it becomes possible to express queries 
concerning specific parts of a diagram in novel ways: “smart 
diagrams” become a reality. At a later stage we aim at 
developing the query system based on the explicit structure and 
semantics of the diagram. Example (Figure 2): What is the total 
number of employees reporting to Peter? Who is reporting to 
Peter? Show me the levels that directly report to Peter?   

4.3 Implementation 
Implementation of ZineML for two classes of diagrams: process 
and hierarchical diagrams is in hand. The Java Programming 
Language has been used to implement the presentation algorithms 
aiming at generating the graphical representation of the diagram 
(SVG). The graphical representations of ZineML and 
MyLanguage are done by applying XSLT transformations to each 
document by respecting rule sets. The verbalization model 
allowing the generation of the structure and semantic of the 
diagram based on the syntax of the corresponding XML language 
used (ZineML or MyLanguage) has been implemented using an 
XSLT Transformation on ZineML and MyLanguage. The output 
is an XHTML document containing the textual representation of 
the structure and the semantic of the diagram. Other 
functionalities of GraSSML are at the design stage ready for 
implementation. Once the implementation of the first prototype is 
completed, experiments will be carried out in order to evaluate the 
usability and accessibility of the system. 

5. CONCLUSION AND FUTURE WORK 
Graphics on the Web have significantly improved but a number of 
issues still remain unsolved. This paper has outlined these issues 
and has presented some related work aiming at resolving them. 
These only address some of the problems and they emphasize the 
need to make the graphical information (information on the 
structure and the semantics of the graphics) part of the graphic. 

We have looked at the problem of creation, modification, access 
and exploration of Web graphics from a different perspective. 
Using the GraSSML system, the semantic and structural 
information is made available at the creation stage. The 
availability of this information offers new possibilities. Web 
Graphics become “smart”, they carry their knowledge with them, 
and intrinsically they know their structure (ZineML) and 
semantics (MyLanguage). Any application smart enough to 

access, explore and present this knowledge in the right way 
should be able to propose solutions for identified problems (e.g. 
adaptive and accessible graphics for all). This could substantially 
improve the accessibility of web graphics. GraSSML could be the 
starting point for many projects currently aiming to access, 
present, explore and adapt graphical information [15] [16].  
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