
Dialog Generation for Voice Browsing

Zan Sun Amanda Stent I.V. Ramakrishnan

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794, USA
{zsun, stent, ram}@cs.sunysb.edu

ABSTRACT
In this paper we present our voice browser system, HearSay,
which provides efficient access to the World Wide Web to
people with visual disabilities. HearSay includes content-
based segmentation of Web pages and a speech-driven in-
terface to the resulting content. In our latest version of
HearSay, we focus on general-purpose browsing. In this pa-
per we describe HearSay’s new dialog interface, which in-
cludes several different browsing strategies, gives the user
control over the amount of information read out, and con-
tains several different methods for summarizing information
in part of a Web page. HearSay selects from its collection of
presentation strategies at run time using classifiers trained
on human-labeled data.

1. INTRODUCTION
The World Wide Web has become an indispensable aspect

of our society, used for education, commerce, medicine and
entertainment. However, the primary means of accessing the
Web is via browsers designed for visual modes of interaction
(e.g., Internet Explorer, Firefox, etc.). This limits access for
an entire community of people with visual disabilities. This
target population faces particular difficulties in accessing,
scanning and summarizing/distilling information on a Web
page or group of pages, filling out Web forms, and using
Web search facilities.

Creating audio browsable Web content has become the
focus of intensive research efforts by industrial enterprises
(e.g., IBM) and standardization organizations (e.g., W3C).
New markup languages, such as VoiceXML [9], SALT [8] and
XHTML+Voice [11], and new voice browser systems, such
as IBM’s WebSphere Voice Server, have emerged to facilitate
the creation, publishing, and exchange of audio browsable
Web content. However, adapting to voice browser technol-
ogy still remains a significant burden for many Web content
providers. Furthermore, while current screen readers and
voice browsers are useful for reading HTML documents, they
impose significant overhead on users. These systems provide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A at WWW2006 23-26 May 2006, Edinburgh, UK
Copyright 2006 ACM 1-59593-281-x/06/05 ...$5.00.

almost no filtering of Web page content to eliminate “noise”
(e.g., advertisements), and do not provide the user with a
semantic view of the pages being browsed. As a result, the
user is forced to arrow down or page down through a sin-
gle columned presentation of all the links on a given page
including the navigational links and ads.

In previous work, we developed a voice browser system,
HearSay [29]. HearSay provided access to the content of
news, commerce and educational Web pages in an efficient
and simple way and had a uniquely flexible, controllable
interface. However, because HearSay relied on ontologies
and hand-built templates for content extraction and pre-
sentation, its scope was limited. In this paper we present
our revised, general-purpose HearSay system. We focus on
HearSay’s dialog interface, which includes several different
browsing strategies, gives the user control over the amount of
information read out, and contains several different methods
for summarizing information in part of a Web page. HearSay
selects from its collection of presentation strategies at run
time using classifiers trained on human-labeled data.

The rest of this paper is organized as follows. In Section
2 we describe the HearSay system. In Section 3 we present
HearSay’s general purpose browsing strategies. We describe
HearSay’s content presentation strategies in Section 4. We
discuss related work is described in Section 5 and finally, we
conclude in Section 6.

2. INTRODUCTION TO HEARSAY

2.1 HearSay Architecture
The architecture of the HearSay voice browser is shown in

Figure 1. It includes three basic components: the Browser
Object Interface, the Content Analyzer, and the Interface
Manager. The Browser Object Interface1 fetches pages from
Web servers. Special features include automatic form fill-
outs and retrieval of pages pointed to by navigable links
that require execution of JavaScript.

The Content Analyzer partitions an input Web page into
a logical structure of segments containing related content
elements by analyzing the page’s structure and content. The
output of the Content Analyzer is a partition tree of the
content in the input page.

The Interface Manager labels each partition in the par-
tition tree using pre-trained classifiers, described in Section
4. These labels are used by the Dialog Generator that auto-

1http://msdn.microsoft.com/library/default.asp?url=
/workshop/browser/prog browser node entry.asp

HearSay�

Web�
Server�

Browser Object Interface�

Controller�

Interface Manager�

Voice Devices�

Web Pages�

Content Analyzer�

Dialog Generator�

Figure 1: Architecture of HearSay

Figure 2: An example from New York Times.

matically generates a VoiceXML dialog interface to the Web
page content. We use our own VoiceXML interpreter, along
with freely available text-to-speech synthesizers and speech
recognizers, to execute this VoiceXML dialog.

2.2 Using HearSay
HearSay’s main output modality is speech. It accepts in-

put in text or speech, so can be used both on small form-
factor devices such as PDAs, and on desktops/laptops.

Suppose Alice is a student who has visual disabilities. She
often browses the Web using HearSay. Today she opens the
web site of New York Times (http://www.nytimes.com) by
saying “New York Times”. After loading the page (shown in
Figure 2), HearSay automatically partitions it into segments
of related content using structural and semantic information.

HearSay automatically creates a VoiceXML dialog inter-
face to the partitioned content. For the Web page in Fig-
ure 2, HearSay might say, “There are two sections. Section
one (size: 2 percent) keywords are New York Times, Per-
sonalize Your Weather, Updated Friday,.... Navigate it?”.
From the description Alice decides that section one is the
header of the Web page and replies “No”. HearSay contin-

ues to the next section, saying “Section two (size: 98 per-
cent) keywords are news, international, business, ... Navi-
gate it?”. Alice chooses to browse this partition (labeled 2
in Figure 2), which itself contains 3 partitions. After further
browsing, Alice may navigate to a headline story linked to in
the partition labeled 3 in Figure 2, at which point HearSay
will read out the story. Alice can also invoke common nav-
igation commands such as “Go back”, “Skip” or “Repeat”
at any time.

Unlike our first version of HearSay [29], which was based
on using domain-specific ontologies and dialog templates,
the current HearSay is designed for generality. Consequently,
we have modified both our Content Analyzer and our Inter-
face Manager. We briefly describe our Content Analyzer,
then look in detail at our Interface Manager.

2.3 Content Analysis
Here we describe the content analysis algorithm that HearSay

uses to partition a Web page into semantically related seg-
ments. It is based on our previous work on structural and
semantic analysis of Web content [24, 29, 25, 26]. Content
analysis (see [24] for details) is based upon the observation
that semantically related items in content-rich Web pages
exhibit consistency in presentation style and spatial local-
ity. Exploiting this observation, a pattern mining algorithm
working bottom-up on the DOM tree of a Web page aggre-
gates related content in subtrees. Briefly, the algorithm ini-
tially assigns types, reflecting similarities in structural pre-
sentation, to leaf nodes in the DOM tree and subsequently
restructures the tree bottom-up using pattern mining on
type sequences. The DOM tree fragment for the page in
Figure 2(a) is shown in Figure 3(a). The type of a leaf node
is the concatenation of HTML tags on the root-to-leaf path
and that of an internal node (or partition) is composed from
the types of its child nodes. In the restructured tree, known
also as the partition tree, there are three classes of parti-
tion: (i) group - which encapsulates repeating patterns in
its immediate children type sequence, (ii) pattern - which
captures each individual occurrence of the repeat, or (iii)
block - when it is neither group nor pattern. Intuitively the
subtree of a group node denotes homogenous content con-
sisting of semantically related items. For example, observe
how all the headline news in the central part in Figure 2(a)
are rooted under the group node in the partition tree. The
leaf nodes of the partition tree correspond to the leaf nodes
in the original DOM tree and have content associated with
them. The partition tree resulting from structural analy-
sis of the DOM in Figure 3(a) is shown Figure 3(b). The
partition tree represents a logical organization of the page’s
content.

3. HEARSAY’S BROWSING STRATEGIES
HearSay’s dialog creation component takes as input a par-

tition tree constructed from Web page content. It walks
over this tree, constructing a menu-based dialog for browsing
the content using speech. In previous versions of HearSay,
this dialog was constructed using a set of domain-specific
VoiceXML templates. Our focus in this version of HearSay
is generality; the system should provide a reasonably effi-
cient interface to any Web page. This involves a) permitting
efficient navigation; and b) presenting content efficiently.
Because the data structure the system operates over is a
partition tree, HearSay’s general-purpose navigation strate-

TD�

JOB
MARKET

REAL
ESTATE

TR�

...�

TD�

TR�

TABLE�

TR�

TD� TD�

TR�

TD�

NEWS�

TD�

International�

TD�

National�

...�

TR� TR�

TD�

FEATURES�

TD�

Arts�

TD�

Books�

TR�
...�

...�

TABLE�

Judges...�

TR�

By�
MICHAEL...�

TR�

11:29...�

TR�

The clean�
air...�

...�

Politics...�

TR�

By CARL...�

TR�

10:48...�

TR�

Hours�
after...�

...�

TR�

BLOCK�

BLOCK�

GROUP�

PATTERN�

PATTERN�

By MICHAEL...�
...�

...�...�

...�

Judges...�

GROUP�

PATTERN�

PATTERN�
GROUP�

...�

NEWS�

REAL ESTATE�
JOB MARKET�

...�

GROUP�

GROUP�

NEWS�

...�

By CARL...�
Politics...�

(a) DOM (b) partition tree

Figure 3: Structural Analysis of the Page in Fig 2

gies are breadth-first navigation (BFN) and depth-first nav-
igation (DFN). To permit efficient presentation of content,
HearSay lets the user change its verbosity, or the amount of
information it provides about a partition.

3.1 Breadth-First and Depth-First Navigation
In BFN, all the child partitions in a partition are presented

to the user, who then selects one for further browsing. This
strategy is straightforward and gives users an overview of the
available selections from which they can choose. However,
if a partition has many children, it can be hard for a user to
listen to and remember all the browsing choices. Consider
the category news section of the New York Times shown in
Figure 4(a). The partition tree of this particular section is
shown in Figure 4(b). There are in fact 20 child partitions
of this partition, too many for the user to remember [23].

DFN is used in cases like these. In DFN, each child of
a partition is presented individually, with the user given a
yes/no choice about whether to navigate into that partition
right after it is presented. An alternative to DFN would be
to use BFN with barge-in, so that a user could interrupt the
system with “navigate” right after hearing about a partition
of interest. However, with speech input the use of barge-in
leads to more speech recognition errors. In addition, with
DFN the user never has to listen to the children of a parti-
tion more than once (because the system resumes presenting
children at the location where the user last made a choice),
whereas with BFN+barge-in, the user would have to listen
to the whole list of children of a partition at each return to
the root of the partition.

Table 1 shows the BFN and DFN dialogs output from
HearSay for the category news presented above.

HearSay2 uses a simple method to choose between BFN
and DFN based on the number of children a partition has.
However, the user can also switch between BFN and DFN
at any time to fit personal preference.

3.2 Verbosity
When first browsing a Web page, the user may need lots of

information to make navigation choices. However, for expert
users this information may be unnecessary and annoying.
HearSay now lets users adjust the amount of information it
provides about each partition:

Level 1 – non-verbose mode: provide just the depth and
type (group, pattern or block) of the partition.

Level 2 – partly-verbose mode: provide all the informa-
tion from level 1 plus information about the partition’s

GROUP�

PATTERN�

PATTERN�

PATTERN�

PATTERN�

...�

GROUP�

#Text: Business

GROUP�

#Text: National

GROUP�

#Text: Washington

GROUP�

#Text: Health

PATTERN�

GROUP�

#Text: International

PATTERN�

GROUP�

#Text: New York/Region

PATTERN�

GROUP�

#Text: Sports

PATTERN�

GROUP�

#Text: Technology

(a) Category news section (b) The partition tree

Figure 4: Category News from New York Times

HearSay2: You are at level 2. There are 3
sections in this level. Section 1, ... (pre-
senting the partitions using the default or preset
verbose mode.)
User: (at any time) Verbose 1.
HearSay2: Non-verbose mode. Level 2,
3 sections in this level. Section 1,
heterogenous content; Section 2, homogenous
content, ...
User: (at any time) Verbose 3.
HearSay2: Full-verbose mode. Level 2,
3 sections in this level. Section 1,
heterogenous content (size: 34 percent),
first 5 most frequent words are: news,
opinions, features, ... It has 12
subsections with labels World News, Sports
News, ... The number of words and links are
231 and 34 respectively.
User: ...

Figure 5: Sample HearSay dialog

structure OR content (see Section 4.2).

Level 3 – full-verbose mode: provide all the information
from level 1 plus information about the partition’s
structure AND content.

The user may change the ”verbosity level” at any time.
Once the level is set, HearSay will use it until it is changed
again. A sample dialogue involving changes to the verbosity
level is shown in Figure 5.

4. HEARSAY’S PRESENTATION STRATE-
GIES

In our current version of HearSay, users can set their own
browsing strategy (BFN or DFN) and choose the amount
of information about the partition tree they want to hear.
However, HearSay should also be able to modify its pre-
sentation strategy by itself according to the changing re-
quirements imposed by the content it is presenting. In the

BFN DFN
HearSay2: You are at level 2. There are 20
sections in this level. Section 1, Business;
Section 2, National; Section 3, Washington;
Section 4, Health ...(may takes a while to finish
all the 20 sections) please choose from the above
20 sections.
User: (If she still remembers the second item)
Section 2.
HearSay2: National. (continue with the national
news)
User: ...

HearSay2: You are at level 2. There are 20
sections in this level. Section 1, Business.
Navigate it?
User: No.
HearSay2: Section 2, National. Navigate
it?
User: Yes.
HearSay2: National. (continue with the national
news)
User: ...

Table 1: Breadth-first navigation vs. depth-first navigation

sections below, we identify three aspects of content presen-
tation in HearSay. We then describe how we used human-
annotated data to automatically train classifiers to deter-
mine HearSay’s content presentation strategy at run time.

4.1 Navigation: Searching vs. Browsing
It is well-known that user activities over Web pages during

navigation consist of two basic types: searching and brows-
ing. Previously, researchers have looked at how users switch
between strategies across sequences of Web pages [12, 33].
Here, we apply these ideas to navigation across partitions
(possibly within a single Web page).

In the New York Times homepage shown in Figure 6(a),
there are basically two big partitions (labeled 1 and 2). Par-
tition 1 is the header of the page, while partition 2 contains
the main content. Partition 2 is further divided into three
partitions: a menu on the left-hand side, a set of headline
news items in the middle, and a set of other news stories
and related content on the right-hand side. A visitor to this
page looking for news is probably not interested in listening
to partition 1 or the menu in partition 2. Instead, the user
will search to partition 3, the headline news items. At this
point, her activity will turn from searching to browsing, i.e.
listening to the news stories.

As illustrated in this example, each partition in one of
HearSay’s partition trees can be classified as either a search-
ing or a browsing partition. For browsing partitions, HearSay
can simply read out the partition’s contents. We created a
VoiceXML dialog template to perform this task. However,
for searching partitions, HearSay needs to provide a sum-
mary of information about the partition so the user can
decide whether to search inside it. The type of summary
depends on the structure and content of the partition itself.

4.2 Partition Summaries: Structure vs. Con-
tent

We distinguish between two basic types of partition sum-
mary for searching partitions: structural, and content-based.
In a structural summary, HearSay describes the structure of
the partition: its location in the partition tree, its size, etc.
In a content-based summary, HearSay presents key words
in the content of the partition or gives a short extractive
summary based on the text in the partition. For partitions
containing heterogeneous content, structural summaries are
more informative. For partitions containing semantically re-
lated items, content-based summaries are more useful.

We designed a VoiceXML dialog template for each type
of summary. However, when constructing a content-based
summary for a partition, HearSay must decide which text

to include.

4.3 Partition Summaries: Content Selection
Common text summarization techniques use term frequen-

cies in documents to identify important words/phrases/ sen-
tences [22]. These documents are usually fairly large, e.g.
a news report, or an academic paper, etc. However, our
partitions are generally small, so extractive summarization
methods work poorly. Our summarization method is based
on the observation that, in Web pages, visual hints are com-
monly used to emphasize important elements (e.g., the titles
of news articles are usually in big fonts). Each sentence in a
searching, content-based partition is labeled as either impor-
tant or unimportant. The important sentences/phrases are
used in the text summary for that partition.

4.4 Evaluation
We used machine learning methods to train classifiers for

each of these three binary classification tasks:

• Classify each partition as browsing or searching

• Classify each searching partition as best-suited for a
structural or content-based summary

• Classify each sentence/phrase in a searching/content-
based partition as either important or unimportant

4.4.1 Partition Types
We collected about 50 partition trees from different Web

pages (mainly in the news domain) and manually labeled
a subset of partitions selected at random from each parti-
tion tree (the trees are very large, so we could not label
all the partitions). Each partition was labeled as browsing,
searching/structural or searching/content-based. Separately,
we automatically extracted 44 features (shown in Table 2)
for each partition in each partition tree. These features rep-
resent information about the structure of the partition tree
and the content in the original Web page.

We built two support vector machines [14] using these
features. One classifies partitions as searching or brows-
ing ; the second classifies searching partitions as structural
or content-based. We used libSVM [13] to train our classi-
fiers. We used a sequence of binary classifiers rather than
a single one-versus-all SVM because: (a) binary classifiers
usually have better performance than multi-class classifiers;
and more importantly, (b) the two problems do not necessar-
ily follow the same feature-space mapping and distribution.

We used five-fold cross-validation to evaluate the perfor-
mance of our classifiers for this task. We experimented with
different kernels; our best results, obtained using the Radial

(a) (b)

Figure 6: An example from the New York Times

Basis Function kernel, are 86% correct for navigation type
(browsing or searching) and 88% correct for summary type
(content-based or structural).

In HearSay’s Dialog Generator, a VoiceXML dialog tem-
plate is applied to each partition based on its classification
and the user-selected verbosity level. When the user selects
verbosity level 2, the content-based or structural template is
used for searching partitions. Both structural and content-
based information are presented for searching partitions at
verbosity level 3; no description is provided for searching
partitions at verbosity level 1. The browsing template is
used for browsing partitions at all verbosity levels.

4.4.2 Partition Summaries
We manually labeled 700 leaf nodes from our 50 partition

trees. Each node was labeled as important or unimportant.
Separately, we automatically extracted the the 13 features
given in Table 3 for each node. These features include in-
formation about the position of the leaf node as well as the
formatting information.

We trained decision tree classifiers for this task using Weka [32]
implementations of the decision tree algorithms (i.e., J482,
ADTree[16], NBTree[19] and LMT[20]). As a baseline, we
took the first sentence/phrase in a partition as the summary
of that partition.

For testing, we used 10 partition trees from 10 new news
Web sites. Our results are shown in Table 4. The best
decision tree (i.e., J48) works significantly better than the
baseline for partitions where there are clear visual hints.
However, we found that performance on this task is highly
dependent on the performance of the underlying partition-
ing algorithm. For example, sometimes boundaries of par-

2Weka’s version of C4.5[28].

No. Name Description

1-5 NODE T The type of the partition.
6-11 PAR T The type of the parent.
12-17 PREV T The type of the left sibling.
18-22 NEXT T The type of the right sibling.
23 NUM W Number of words.
24 NUM LK Number of links.
25 NUM L Number of leaf nodes.
26 NUM CH Number of direct children.
27 NUM LS Number of left siblings.
28 NUM RS Number of right siblings.
29 LEVEL Number of levels to the root.
30 LONG LV Number of levels to the deepest leaf

node.
31 SHORT LV Number of levels to the nearest leaf

node.
32-36 NUM CT Number of children with the same

type.
37 TOTAL W Total number of words in the tree.
38 PAR W Total number of words in the parent.
39 TOTAL L Total number of leaf nodes in the tree.
40 PAR L Total number of leaf nodes in the par-

ent.
41 MAX LV Level of the deepest branch in the

tree.
42 PAR MAX Level of the deepest branch in the

parent.
43 MIN LV Level of the most shallow branch in

the tree.
44 PAR MIN Level of the most shallow branch in

the parent.

Table 2: Features for SVM.

No. Description
1-3 The node type of its parent and siblings.
4 Number of words in the current node.
5 Number of words in the parent node.

6-7 Number of previous and next siblings.
8 Number of levels to the root.
9 Max number of levels to the root from siblings.

10-13 Font style.

Table 3: Features used in labeling problem.

Web site Baseline J48 ADTree NBTree LMT
NYTimes 84% 100% 97% 92% 81%

CNN 71% 80% 74% 80% 69%
GoogleNews 78% 100% 100% 97% 97%

LATimes 85% 88% 88% 88% 78%
MSNBC 81% 81% 81% 81% 81%

Average 79.8% 89.8% 89.2% 85.6% 81.2%

Table 4: Primary evaluation for labeling problem.

titions were incorrect, so that important sentences were in
the wrong partition. Example rules learned by the classifiers
are,

• if the element is among first three elements in this par-
tition, the number of levels to the root of this partition
is less than 3, and its font size is bigger than 2, then
it is important.

• if the element is a link under a pattern node, it is the
first element, or it is the second element but the font
size is bigger than 1, then it is important.

In Table 5, we show part of a dialog generated from the
Web page of Figure 6(a). Switches from one dialog strategy
to another are annotated in the dialog.

5. RELATED WORK
The issue of promoting Web accessibility for persons with

visual disabilities has become increasingly prominent. As
early as 1997, W3C launched the Web Accessibility Initia-
tive (WAI) [10] to promote the development of browser stan-
dards and guidelines (e.g., HTML authoring guidelines and
user agent guidelines) to make the Web more accessible to
individuals with visual disabilities. Similar initiatives have
been developed by industry: examples include Microsoft’s
accessibility initiative [1], IBM’s Special Needs Systems pro-
gram [4], and Sun Microsystem’s Java accessibility API [5].

Several studies have highlighted the ineffectiveness of ex-
isting screen readers for Web browsing tasks [15, 17]. As a
result, several specialized Web voice browsers have been de-
veloped to adapt HTML-based contents. For example, the
JAWS system [6] and IBM’s Home Page Reader [3] allow
navigation via hyperlinks. The BrookesTalk system [2] uses
NLP-base text abstracting and summarization techniques to
facilitate voice browsing of the Web. The voice feature in the
Opera browser [7] provides a set of voice-based commands.

A key difference between HearSay and these systems is
that HearSay performs extensive analysis of the content of
HTML documents, while other systems do minimal process-
ing of Web page content. Content-based analysis enables
segmentation of Web page content into related blocks and
facilitates efficient speech-driven browsing.

As accessibility becomes a more mature research area, the
design of specialized voice-driven interfaces for is receiving

more attention (e.g. [31, 18]). For example, in [30] the au-
thors examined the accessibility issues relating to the Web
and proposed solutions in the context of a screen reader sys-
tem. More guidelines relating to improving the accessibililty
of search engines were proposed in [21]. However, in most
research relating to accessibility the proposed solution is for
content authors to add additional tags to Web page content,
or for the engineers of the browser to provide specialized on-
tologies and rules to facilitate content presentation [29, 27].
By contrast, we take the markup of content on the Web as is,
and use automatic analysis to make the content accessible.
Our approach is to provide efficient access to as much of the
Web as possible; we are willing to sacrifice some elegance for
coverage.

6. CONCLUSION AND FUTURE WORK
We have described our new HearSay Web browser for peo-

ple with visual disabilities. HearSay is designed for efficient,
broad-coverage voice-driven Web browsing. In this paper,
we focused on the general-purpose browsing and content pre-
sentation strategies employed in HearSay. In future work,
we plan to conduct a complete evaluation of HearSay and
refine our browsing and presentation strategies accordingly.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Foun-

dation under grant number IIS-0534419 and by the Defense
Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Di-
vision, under Contract No. NBCHD030010. The authors
would like to thank the anonymous reviewers for their very
helpful feedback.

8. REFERENCES
[1] Accessibility at Microsoft.

http://www.microsoft.com/enable/.

[2] BrookesTalk.
http://cms.brookes.ac.uk/computing/speech/.

[3] IBM Home Page Reader.
http://www-306.ibm.com/able/.

[4] IBM human ability and accessibility center.
http://www-306.ibm.com/able/.

[5] Java accessibility techonologies.
http://java.sun.com/products/jfc/accessibility/index.jsp.

[6] JAWS Screen Reader.
http://www.freedomscientific.com.

[7] OPERA browser with voice.
http://www.opera.com/voice/.

[8] Speech Application Language Tools.
http://www.saltforum.org/.

[9] VoiceXML 2.0. http://www.w3.org/TR/voicexml20/.

[10] Web Accessibility Initiative(WAI).
http://www.w3.org/WAI.

[11] XHTML+Voice profile 1.2.
http://www.voicexml.org/specs/multimodal/x+v/12/.

[12] L. D. Catledge and J. E. Pitkow. Characterizing
browsing strategies in the World Wide Web. Computer
Networks and ISDN Systems, 27(6):1065–1073, 1995.

[13] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001.
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

(Browsing strategy: BFN. Verbosity level 2.)

(Partition type: Searching. Structural summary.)
HearSay: Level 2, 3 sections.
Section 1 (size: 13 percent) has 169 words and 51 links. Frequent words
are News, Opinion, Features, Services, Member.
Section 2 (size: 63 percent) has 819 words and 133 links. Frequent
words are International, National, Washington, Business, Editor, Complete
Coverage.
Section 3 (size: 24 percent) has 312 words and 39 links. Frequent words
are Market, Complete News, Forum, World, Reviews.
Please choose from the three sections.

User: Section 2.

(Browsing strategy: DFN.)

HearSay2: Level 3, 6 sections.
Section 1 (size: 18 percent) has 147 words and 8 links. Frequent words are
court, prosecutors, sunni, Iraq, centers. Navigate it?

User: Yes.

(Browsing strategy: BFN.)
(Partition type: searching. Content-based summary.)

HearSay2: Level 4, 4 sections.
Section 1 is about Plant Operators Must Install Pollution Controls, Court
Rules.
Section 2 is about Judge Gives Prosecutors New Chance in Terror Case.
Section 3 is about Sunnis Denounce Plan by U.S. and Iran to Hold Talks on
Iraq.
Section 4 is about New Yorkers Will Pay to Sweat at 6 Previously Free
Centers.
Please choose from the four sections.

User: Section 3.

(Partition type: browsing.)

HearSay2: Level 5. Link: Sunnis Denounce Plan by U.S. and Iran to Hold
Talks on Iraq. By KIRK SEMPLE, 7:11 PM ET. Sunni leaders today said the
talks would amount to "unjustified interference" by foreign nations in
Iraq’s domestic affairs. Link: Kurds Destroy Shrine, Navigate it?

User: No.

HearSay2:(continue) Link: Photos, Navigate it?

User: No.

HearSay2:(continue) Link: Complete Coverage: The Reach of War, Navigate
it?

User: No.

HearSay2:(continue) You’ve finished browsing this section. Now going back
to upper level.
Level 4, 4 sections.
Section 1 is about Plant Operators Must Install Pollution Controls, Court
Rules.
(repeating the description of block 3)

...

Table 5: Sample HearSay dialog based on the Web page in Figure6(a)

[14] N. Cristianini and J. Shawe-Taylor. An Introduction to
support vector machines and other kernel-based
learning methods. Cambridge University Press, 2000.

[15] C. Earl and J. Leventhal. A survey of windows screen
reader users: Recent improvements in accessibility.
Journal of Visual Impairment and Blindness, 93(3),
1999.

[16] Y. Freund and L. Mason. The alternating decision tree
learning algorithm,. In Proc. 16th International Conf.
on Machine Learning, pages 124–133. Morgan
Kaufmann, San Francisco, CA, 1999.

[17] J. Gunderson and R. Mendelson. Usability of world
wide web browsers by persons with visual
impairments. In Proceedings of the RESNA Annual
Conf., 1997.

[18] P. Karampiperis and D. Sampson. Designing learning
systems to provide accessible services. In W4A ’05:
Proceedings of the 2005 International
Cross-Disciplinary Workshop on Web Accessibility
(W4A), pages 72–80, New York, NY, USA, 2005.
ACM Press.

[19] R. Kohavi. Scaling up the accuracy of Naive-Bayes
classifiers: a decision-tree hybrid. In Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining, pages 202–207, 1996.

[20] N. Landwehr, M. Hall, and E. Frank. Logistic model
trees, 2003.

[21] B. Leporini, P. Andronico, and M. Buzzi. Designing
search engine user interfaces for the visually impaired.
SIGCAPH Comput. Phys. Handicap., (76):17–18,
2003.

[22] I. Mani and M. T. Maybury. Advances in Automatic
Text Summarization. MIT Press, 1999.

[23] G. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing
information. Psycological Review, 63:81–97, 1956.

[24] S. Mukherjee, I. Ramakrishnan, and A. Singh.
Bootstrapping semantic annotation for content-rich
HTML documents. In Intl. Conf. on Data Engineering
(ICDE), 2005.

[25] S. Mukherjee, G. Yang, and I. Ramakrishnan.
Automatic annotation of content-rich HTML
documents: Structural and semantic analysis. In Intl.
Semantic Web Conf. (ISWC), 2003.

[26] S. Mukherjee, G. Yang, W. Tan, and
I. Ramakrishnan. Automatic discovery of semantic
structures in HTML documents. In Intl. Conf. on
Document Analysis and Recognition, 2003.

[27] B. Parmanto, R. Ferrydiansyah, A. Saptono, L. Song,
I. W. Sugiantara, and S. Hackett. Access: accessibility
through simplification & summarization. In W4A ’05:
Proceedings of the 2005 International
Cross-Disciplinary Workshop on Web Accessibility
(W4A), pages 18–25, New York, NY, USA, 2005.
ACM Press.

[28] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

[29] I. Ramakrishnan, A. Stent, and G. Yang. HearSay:
Enabling audio browsing on hypertext content. In Intl.
World Wide Web Conf. (WWW), 2004.

[30] M. F. Theofanos and J. G. Redish. Bridging the gap:
between accessibility and usability. Interactions,
10(6):36–51, 2003.

[31] Z. Trabelsi, S.-H. Cha, D. Desai, and C. Tappert. A
voice and ink XML multimodal architecture for
mobile e-commerce systems. In WMC ’02: Proceedings
of the 2nd international workshop on Mobile
commerce, pages 100–104, New York, NY, USA, 2002.
ACM Press.

[32] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition edition, 2005.

[33] G. Xu, A. Cockburn, and B. McKenzie. Lost on the
Web: An introduction to Web navigation research. In
The 4th New Zealand Computer Science Research
Students Conference, 2001.

