Transforming Web Pages to Become Standard-Compliant
through Reverse Engineering

Benfeng Chen
Computer Science Department
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
bfchen@cs.ust.hk

ABSTRACT

Developing Web pages following established starglaeth make
the information more accessible, their renderingeamefficient,

and their processing by computer applications
Unfortunately, more than 95% of the existing Welggmtoday
are not “valid” in that they do not follow some dhe

recommendations (standards) of
Consortium (W3C). Fixing any Web page to make é@nstard-
compliant is a major undertaking. There is now @erssource
tool called HTML Tidy which will attempt to fix thenvalid

HTML code automatically. However, Tidy often chasdke Web
page’s appearance after processing. It is not factefe tool to
transform existing Web pages to make them standampliant.

In this paper we report the design and implememtatif PURE, a
tool that cleans up an HTML document through
engineering. PURE starts with the rendering resfudt given Web
page and generates valid HTML code and CSS autcaigitito
produce the same appearance. It is found to betiefiefor many
existing Web pages. A prototype is now available pablic
testing and comments.

Categoriesand Subject Descriptors

H.4.3 [Communications Applications]: Information Browsers

General Terms
Algorithms, Measurement, Performance, Design, Brpartation,
Standardization.

Keywords
W3C recommendations, Web page, HTML, HTML Tidy, Gafe
Style Sheets, rendering engine, browser.

1. INTRODUCTION

The World Wide Web Consortium (W3C) is an organaathat
develops and promotes the use of standards on éie Mbwever,
as much as 95% of existing Web pages today araliaiv[9] in
that they fail to conform to the W3C “recommendasd

(commonly considered “Web standards” by the comityni

Permission to make digital or hard copies of alpart of this work fc
personal or classroom use is granted without feeiged that copie
are not made or distributed for profit or commdreidvantage and tr
copies bear this notice and the full citation oa finst page. To cof
otherwise, or repulish, to post on servers or to redistribute tds|
requires prior specific permission and/or a fee.

WA4A at WWW2006, 23rd-26th May 2006, Edinburgh, UK
Copyright 2006 ACM 1-59593-281-x/06/05...$5.00.

easie

the World Wide Web

reyers

Vincent Y. Shen
Computer Science Department
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

shen@cs.ust.hk

published since 1995 [16]. These invalid Web pageg not be
rendered consistently across platforms or by differbrowsers,
may not be accessible to some users, and may paoisiems for
Web-based applications. The seriousness of thdgmgpawned
the Web Standards Project (WaSP) [10], which weasbéshed to
encourage people to design Web pages which confrm
standards in order to reduce the cost and compleaft
development, while increasing the accessibility dodg-term
viability of any site published on the Web [21].

The basic idea of Web standards is to develop Wafep with
valid HTML or XHTML code and to separate contenbnfr
presentation. A Web page is composed of three :peotstent,
presentation and behavior. According to Web statgjathe
content should be written in valid HTML or XHTML de; the
presentation (e.g., layout, font, color, etc.) ddcdae specified by
valid CSS code; and the behavior should be coettdtly valid
JavaScript (officially, the ECMAScript [2]) througthe DOM
interface [17]. Figure 1 shows the “trinity” of Wekandards [21].
It is necessary for a Web page to be compliant wWikb
standards because of the following reasons [5][11]:

¢ |ts accessibility is wider because the CSS-basedeptation
is more flexible for different devices, browsers or
handicapped people.

e lts size is smaller and bandwidth for access isiced. For
example, ESPN.com is saving 2TB of traffic per day
redesigning Web pages according to Web standatds [7

e It is friendly for machine processing. Without thd@sused
table and font tags for layout and appearance énctide,
other computers can “understand” the Web page’secton
better.

HTML,
HHTML,
HML

Content and
structure

CEE,
CE52

Presentation ECMASCript,

DO

Behavior

Figure 1. Thetrinity of Web standards

However, as we noted earlier, most Web pages orintieenet
today are not standards-compliant [9]. A very comrpooblem is
that the HTMLTABLE element is widely used for page layout.
Note that theTABLE element is intended to mark up truly tabular
information (“data tables”). But, due to its fledity, content
developers often use tAABLE element to layout pages (“layout
tables”). They should have used the Cascade ShgdetS (CSS)
to layout pages for all the presentation effec®.[People believe
that about 99% of existing websites are obsoletéamss Web
standards are concerned [21]. Rewriting these letéeb pages
will incur a huge cost of time and money. Therefare automated
tool will be very useful if it can help Web devetrp transform
existing Web pages to those that are standardsi@orhpvhile
keeping the appearance consistent with the original

Fixing an existing HTML document to make it stardiar
compliant automatically is a difficult problem. Th&3C has
endorsed an open-source tool called “HTML Tidy” efhican
automatically fix a Web page’s invalid code [8].tBudoes not
convert presentation-related elements from exisHiTd/IL code
to using style sheets. Furthermore, it often failgen fixing a
complicated Web page, especially if its layout ésigned with
nested HTML tables. Unfortunately, nested laycatbldés are
widely used in legacy Web pages and various tricksfrequently
used to extend the presentation effect of tableguitk study
shows that of the 500 most popular websites [1hual70 of
them use theTABLE element to control the layout. The
appearance of these Web pages often changes digsttter
they are processed by Tidy. Figure 2 shows an pleam
(http://www.imdb.comy No. 46 of the top 500 most popular
websites on September 1, 2005): Figure 2 (a) iothgnal page
and Figure 2 (b) shows parts of the resulting g processing
by Tidy, which produced a long thin page. This nsléged an
extreme example but, since many of the Web pageabeotop
500websites are quite complicated, Tidy messes hp t
appearance of at least 80% of them.

Figure 2 (a). Original Web page

Figure2 (b). Partsof theresult after processing by HTML
Tidy

This paper presents an automated tool called “PURB4age
clean-Up through Reverse Engineering”) which u$esreverse
engineering approach to transform legacy Web pagesake
them compliant with Web standards while keepingahpearance
consistent with the original. PURE first uses a ylap Web
browser to render the original Web page to be mee# (the
“preprocessing” step). It then examines the layoluthe Web
page presented in the browser’s window. It segmirgoriginal
Web page’'s content into small rectangles (callecbxds”
thereafter). It retrieves the position and sizeath box through
the browser-generated page structure (in the fdrmDOM tree
[17]). A recursive algorithm is designed to reconst the layout
of the Web page using the CSS box model [15]. Atethd of this
step a new Web page is generated which containsnéer of
empty boxes (the “layout reconstruction” step).the last step,
PURE fills in the content for each box. It takes ffource code for
each box from the original Web page, transfornistéd standard-
compliant code, and then puts the resulting cod® ifhe
corresponding box in the new page (the “box fillirsgep). The
home page ofvww.imdb.comafter processing by PURE is shown
in Figure 3.

The Internet Movie Database

fn

Figure 3. Result after processing by PURE

Our preliminary evaluation shows that over 50% loé home

pages of the top 500 websites can be successfalfi\sformed

through this three-step approach automatically. fileres are

mostly due to some special features of the brogseerated page
structure which is inconsistent with the DOM treedefined by

W3C. Most of these problems could be fixed with somuman

interaction. We therefore believe that PURE carobrexa useful
tool to help Web developers to transform legacy \Wapes.

The highlights of our approach are:

¢ We are able to separate the presentation from cbni®
understand a Web page’s presentation from its saxode is
a very difficult task unless we build a renderinggiee
ourselves. In our reverse engineering approach, came
obtain the presentation from a popular browserh(ag the
Microsoft Internet Explorer (IE)). The major tasktd build
the same presentation using CSS, which is mucleretisin
building a rendering engine.

* We avoid the difficulty of parsing the original HTlMcode
by getting the HTML DOM tree from the chosen browse

¢ We avoid the difficulty of handling ambiguous codad
guessing the author’s intention. The invalid codeoften
ambiguous. For example, the developer may haveolgft
certain closing tags and the browsers must guessento
place them if some are missing. It is reasonablassume
that the authors have tested the Web pages usimgfiite
they upload them to a Web server. So we could & |
rendering result as the starting point for reversgineering.

¢« We use a divide-and-conquer strategy by first segimg the
Web page into small boxes and then reconstructieget
boxes separately. If a certain box has problemsilitnot
affect the others and the author can manually fie t
problematic boxes one by one.

This paper is organized as follows: Section 2 e@rpl®URE’s
approach in detail. Section 3 describes our eviamaif PURE.
In Section 4, the future work to make PURE morective is
discussed.

2. THE REVERSE ENGINEERING
APPROACH

2.1 Background

The content of an HTML document is contained in B@DY
element. All elements which may appear BODY can be
classified into 2 kinds: the “block-level” elemertsd the “inline-
level” elements. Generally, block-level elementayntontain
inline-level elements and other block-level elersemtline-level
elements may contain only data and other inlinell@lements.
For example, the elemer®s DIV, TABLE UL andH1 are block-
level elements an®, SPAN FONT A andIMG are inline-level
elements. During rendering, block-level elemenigagt begin on
new lines, but inline-level elements do not [13].

Generally, a Web browser parses the HTML documaeta tree
structure and then begins rendering based on #ee The tree
structure is often called the HTML DOM (Document €
Model) tree. The W3C's visual formatting model givihe idea
on how a browser renders an HTML document baseits ddOM
tree [14]. Each node in the DOM tree generates @anenore
boxes on the screen if it is visible. A visibleiird-level element
may generate more than one box when the text withgpans
several lines. A visible block-level element alwayenerates one
box because it will begin with a new line. We cage san
element’s box boundaries by adding 8EYLE attribute of CSS
to specify the border of the box. For example:

<P style="border: 1px solid red">
some text</P>

If we specify the border of each element in theuthent body,
we can see that a Web page’s appearance is compbsedny
nested boxes. Modern browsers provide a friendbg@mming
interface for developers to access a page’s DO#dteicture and
each element’s box information (e.g., positionesgource code,
etc.). Therefore, it is possible for us to reveesgineer a Web
page box by box through the browser’s renderingltes

2.2 System Overview

The basic idea of PURE’s approach is to reconsttiuet\Web
page’s layout using the CSS box model and theinfilhe content
for each box. When designing page layout with CB&gple
commonly use th@®IV element to represent a box and use the
style sheet to position the box of the appropr&te. Since the
Web page is composed of many nested boxes, atgfaigard
way is to uséIV to build every box in the original page and then
render the new CSS-based page. But this will besyneSor
example, the code<P>some bold text</P> "
generates two boxes. One box is for elenkeand the other is
for elemenB. Wrapping each box with DIV results in the code

Legacy
Web page

Web page
rendering
engine

|

Format

document Preprocessing

Layout
recons-

Segmen-

tation Layout

A

. >
truction N

reconstruction

A
4

Filling

each box

= |

A 4

I 4

New Web page
with external

css Box filling

Figure4. PURE system overview

“<DIV><P>some <DIV>bold</DIV>
text</P></DIV> ", which breaks the paragraph. This is not
acceptable. Another problem of this simple metrothat many
redundant boxes will be generated due to the HThtlet For
example, the code <TABLE><TR><TD>some
text</TD></TR></TABLE> " generates three boxes because
there are three elements heF&BLE, TR, andTD. This will lead

to redundant code as <DIV><DIV><DIV>some
text</DIV></DIV></DIV> ", Actually, we only need one
DIV. From this example, we can also see that HTMlethlsed
layout is not efficient. The above two examplesvehbat we
cannot simply use every box in the original pagebtild the
layout of the new page. Instead, we should chootg the
necessary boxes. We call these boxes “primary” ®©oxXéee
primary boxes cover all the content and are notlapping with
each other. As a result, the primary boxes segthenpage into
individual rectangles and they will not affect eaother. The
element which satisfies any of the below conditieneonsidered

a primary box:

¢ The TD/TH elements within the layout table (layout table
cell)

¢ The leaf block-level elements outside the layohteta

A leaf block-level element is a block-level elemewhose
descendant elements in the DOM tree are all irlkwet elements.
In other words, there is no block-level elementidasthe leaf
block-level element.

In the new Web page, we use CSS positioning teciesif15] to
make these primary boxes appear in the same posiio they are
rendered by the chosen browser. At the end ofstieis, the layout
reconstruction is finished and the next step iflitan the content

for each primary box. Since each box is correspandd an
element in the DOM tree, the content inside the isdke code of
that subtree which has that element as root. Toexefthe
approach to fill in the content of each box is w though its
corresponding subtree top-down and generate stdwodanpliant
code.

Figure 4 shows the flow chart of the PURE systehesE three
major steps are explained further below.

2.3 Preprocessing

This step has two tasks: (1) generate the input \(abpe's
structure by passing it to a popular browser’s egimgj engine; (2)
format the page’s structure for later processinge Pprimary
boxes are supposed to cover all the page contartwBhout
formatting the document structure, they may faildm so. For
example, the code<BODY><P>text one</P> text two
text three</BODY> " will only generate one
primary box, which is thé element. Therefore, the textekt
two ” and elemenB will be missing according to the primary box
coverage. Our Lemma 1 can solve this problem.

Lemma 1: In the HTML DOM tree, if inline-level elements or
text nodes are the siblings of a block-level eleméney are
implicitly enclosed by the block-level element.

It is easy to proof this lemma. The block-levelnedmt always
begins with a new line and ends with a line bresltich means
any element before or after the block-level elemeitit end or
begin with a line break. In other words, thererisraplicit block-
level element containing the inline-level elemeatstext nodes
around a block-level element. As for the above gtanthe code
“<BODY><P>text one </P><P>text two text
three</P></BODY> " has the same appearance with the

original one. The document formatting process isstre general

and specifies the position and size of each bdakerexternal CSS

block-level elemenDIV to those places where there are implicit file. The body of the HTML code is like:

block-level elements. As a result, the above exanggde will
become %BODY><P>text one </P><DIV>text two

text three</DIV></BODY> ", Figure 5 shows the
process. After formatting, two elements will be ket as primary
boxes: the elemen® andDIV. We can see that they cover the
whole content of the page.

=BODY= =BODY=
/ ‘ \ format / \
=P= Text =H= =p= <0Iw:=
Twvo / \

Text Text Text Text =B=

one Three one Twvo
Text
Three

Figure 5. An example of formatting code

2.4 Layout reconstruction

The tasks of this step are: (1) identify the priynaoxes; (2)
create a new page with the primary boxes in theespasition.
The primary box is defined as the layout table celithe leaf
block-level element outside the layout table. Thienpry box
identification process goes through the DOM trge-down and
checks every element. If an element is considerpdnaary box,
its descendant elements will not be processed. Gh&éantees
that none of the primary boxes overlaps each ottiete that it is
often difficult to distinguish between a layout ltand a data
table unless we develop an intelligent algorithmiclvhcan
“understand” the relationship among the contentabie cells.
This is not the major task of PURE. Instead, we aisample but
effective way. From our observation, when a celfatifle contains
block-level elements (e.g?, TABLE, etc), the table is often used
for layout. On the other hand, the cells of datdets mostly only
contain inline-level elements or text. To identthe leaf block-
level element is easy. After the document formgtiimocess, all
elements at the same level (i.e., they have the garent element)
are either all block-level or all inline-level. & block-level
element outside the layout table has inline-leveinents, it will
be made a primary box.

The primary boxes form the layout of the Web pdde next task
is to create these boxes in a new Web page withstme
positions. As mentioned before, we B® element to represent
a box and using CSS positioning techniques to obritie
location of each box. This is a typical CSS box-elobased
layout design method, which is widely used by thebVdeveloper
community. There are three positioning schemes BCW CSS
recommendation: “normal flow”, “floats” and “absodu
positioning” [18]. These position schemes are sxille and
powerful that there are always various ways to tansa single
layout by using a combination of these schemes. PpgRvides
two different positioning methods to reconstrue klyout. One is
to use absolute positioning and the other is toausembination
of normal flow and floats.

Using the absolute positioning scheme to consttagbut is
simple and straightforward. PURE generates the $ore by one

<BODY:

<DIV id="FirstBox"> ... </DIV>
<DIV id="SecondBox™> ... </DIV>
<DIV id="LastBox™> ... </DIV>
</BODY>

And the external CSS code is like:

#FirstBox {position:absolute; top: 10px;
left: 10px; width: 800px; height:
100px;}

#SecondBox {position:absolute; top:

110px; left: 10px; width: 200px; height:
400px;}

#LastBox {position:absolute; top: 660pX;
left: 10px; width: 800px; height:
200px;}

We can see that the document body structure isodevel tree
and all the primary boxes are in the same leveh ilie same
parent elementBODY This document structure may not be
identical to the original page. Another problemtligt, when
developers change a box’s size, they need to rdasdc the
positions of its neighbor boxes and update therthénCSS file.
So this approach is not flexible. If the numbepdfmary boxes is
not big, this approach is acceptable. But for a plarated page
with many primary boxes, this approach may notuible.

The second approach, which uses a combination whaldlow

and floats schemes to construct the layout, is rflergble than
the first one. It does not specify the position edch box.
Developers are free to edit an individual box aodndt need to
update the positioning code of other boxes.

The normal flow is the default scheme in CSS bositming. In
this scheme, boxes flow vertically starting at tiop of their
containing block, with each one of them placeddiyebelow the
preceding one. The effect is illustrated in Figére

#box1 {width: 300px; height: 300px;}
#box2 {width: 200px; height: 300px;}
<DIV>
<DIV id="box1">text one</DIV>
<DIV id="box2">text two</DIV>

</DIV>
J L

text one

text
two

Figure 6. Normal Flow Positioning

The floats scheme works in the horizontal directioiis achieved
by setting an elementffoat style to eithefeft orright . A
box with floats style specified is shifted as farthe right or left
of its containing block as possible. If two or moaejacent
elements are floated, their tops are positionedhensame line
(side by side) if there is sufficient horizontal asp to
accommodate them. Figure 7 illustrates this effect.

#box1l {float: left; width: 300px;
height: 300px;}
#box2 {float:left; width: 200px;

height: 300px;}

<DIV>

<DIV id="box1">box one</DIV>
<DIV id="box2">box two</DIV>

</DIV >

box one box
two

Figure 7. Floats Positioning

With normal flow and floats positioning techniquege can use
nestedDIV elements to construct any kind of layout of erigti
Web pages. By inserting sub-boxes with normal fimsitioning,
a box is split horizontally into rows. By insertisgb-boxes with
floats positioning, a box is split vertically int@lumns. Therefore,
we can construct layout like the way an HTML tabtees it. But
this CSS approach is more flexible than the HTMilga In the
HTML table, the border lines of columns are aligmetdoss rows
and border lines of rows are aligned across coluimthis CSS
approach, a box can be freely split into rows asldrans without
forced alignment.

Considering the process in which Web developersgdesage

layout with nestedDIV elements and CSS, we designed a top-

down recursive algorithm to construct the layoubenatically. In
the beginning, the Web developers commonly segraepage
vertically or horizontally into several major remtges (boxes).
Then they segment each major box into several sub if
necessary. After that, they may segment each sulirtto even
smaller boxes. By repeating this process recursiaetl creating
boxes level by level, the desired layout is fipaichieved. The
PURE’s algorithm to construct page layout with edsbIV
elements and CSS is similar to this process. Wenasdghat all
the primary boxes are already at their right pldsee example in
Figure 8 (a)). At first, we segment the page framp to bottom
with boxes. The segmentation method is: we set @zdmtal
virtual line on the screen. If this line does nott @cross any
primary box, we consider this line the border limetween two
boxes. We move the virtual line down and check etit
should be a border line or not. After all the horital border lines
are detected, the first level segmentation is dam the page is
composed of a number of boxes stacked from top dtboim
(Figure 8 (b)). Then we try to segment each of éhbsxes
individually. A vertical virtual line inside a barnoves from left to
right and checks whether it should be a border. l&fter all the
vertical border lines within each box are detecthd,second level

segmentation is done (Figure 8 (c)). The boxes rgée@ in the
second level segmentation are further segmentea different
direction to generate the third level boxes (Fig8réd)). This
recursive process is repeated untii no more boxas ke
segmented, which means that the last level box@slaprimary

boxes. Thus, the page layout construction is
A
B C
Original page with First level
primary boxes segmentation
@ (b)

—>

Second level Third level

segmentation segmentation
() (d)

Figure 8. Layout reconstruction algorithm

As for the example in Figure 8, PURE will generttie code
below. For simplicity, the corresponding CSS cosl@at shown
here. The code forms the layout of the new Web pagereserves
the space for primary boxes. The next step islitonfthe code for
each primary box.

<BODY>
<l—- first level -->
<DIV>
<l—- code for primary box A -->
</DIV>
<DIV>
<l—- second level -->
<DIVv>
<l—- code for primary box B -->
</DIV>
<DIV>
<l—- third level -->
<DIV>

<!l—- code for primary box C -->

done.

</DIV>
<DIV>
<l—- code for primary box D -->
</DIV>
</DIV>
</DIV>
</BODY>

Figure 9 shows the layout of the example page iptgrhoxes
following this process.

-

=

Figure 9. Layout in empty boxes

2.5 Box filling

The last step is to fill in the content of eachnmiy box in the
new Web page. Because each primary box is correapgprto a
subtree in the DOM tree of the original Web paggRE goes
through the subtree top-down and generates valig dor each
node of the tree. Some visual effects (e.g., baakupt color, text
alignment and font, etc.) are inherited from asesmdnodes
which are outside the primary box. Therefore, thgeadant nodes
should be scanned to extract their visual effents then we use
style sheet to format the nodes inside the box. ifesentation-
related elements inside the box are removed bygusiyle sheet
during this process. For example, the HTML elem&@dT B, |
and U will be replaced by th&PANelement and style sheet is
used to specify the text appearance. By doing d$b,the
presentation code in the original Web page is pédpout so that

the new HTML document is purely for content and its
presentation is purely controlled by CSS. PURH thees HTML
Tidy to make the final clean-up of the generatediecfor each box.

3. IMPLEMENTATION AND
EVALUATION

3.1 Selection of Web page rendering engine

As discussed above, the reverse engineering agpfoatuses a
browser’s rendering engine to generate a Web paiaisture.
Table 1 lists the rendering engines used in welivkm browsers
and their popularity statistics in October 2005 [4]

Table 1. Rendering engine statistics

Rendering Engine Used by browsers Popularity

MSHTML-Modern | Internet Explorer 6.0 82.51%

MSHTML-Legacy | Internet Explorer 3.94%
4.0/5.0/5.5

Gecko Mozilla, Firefox, 9.97%
Netscape 7.x

KHTML Safari, Konqueror 1.62%

Opera Opera — all versions 0.83%

Netscape Netscape 3.x/4.x 0.07%

The rendering engine “MSHTML-Modern”, which is uséy
Microsoft Internet Explorer 6.0, is by far the masipular. It is
reasonable to assume that most Web page develapeid test
their creation with this rendering engine befordoading it to a
public Web server. Microsoft also provides suffitie
documentation about programming with MSHTML-Modd#6}
so that we can obtain enough information about\Wheb page’s
structure. For these reasons we use it in PUREe Nt our
approach will work equally well with any other brsev as long as
the structure information is available.

In order to embed MSHTML-Modern in PURE, the softavas
developed on Windows XP in C++.

3.2 Graphic user interface

Since we do not expect PURE to be perfect in fiximalid Web
pages automatically, it is designed to have a dcaphuser
interface (GUI) so that the user may fix some peoid
interactively whenever needed. Through PURE’'s Gt# tiser
may adjust the resulting layout conveniently. PUREes HTML
Tidy to make sure the code used to fill in the lso®ree valid
HTML code. However, the user is given the oppotiurto
change that code manually if Tidy's result is noitable. Figure
10 shows an example of a PURE pop-up window whiehuser
may use to fix the HTML code easily.

]Eﬁmm / IMDb pro
- =| g, i |‘ sssscsssssssssssssnscsssnsnscsssassnas=]

alt="The Internst Movie Database
b.com/mediafimdb/01/1/70/65/49.gif"

width=400

border=0>
anbsp; Visited
by over < SPAN

style="BORDER-BOTTOM: #ffcedd 2px solid" >30 million
</SPAN movie lovers each

raonth! < /SPAN:

@os W ek

Figure 10. Pop-up window for code fixing.

3.3 Evaluation

Our evaluation is to test whether the PURE tool saccessfully
reconstruct existing Web pages automatically. Thamal flow
and floats positioning technique is used to geeethé layout
because it is much more flexible than absolutetjposng. The
testing Web pages used are the homepages of ti®@pwebsites
[1]. These top websites are mostly portal webséed their
homepages are among the most complicated cases.thése are
different languages used in the top 500 websitd® (English
sites, 121 Chinese sites, 45 Japanese sites,\W.yan also test
PURE's robustness on processing different languadgése
similarity between the original Web page and PURBegated
Web page is used as the subjective evaluationrieritey the
authors. A rating of 100% means that the PURE-geeé Web
page appears the same as the original. A ratirfip® (such as
the IMDB website example in Figure 3) means that BFURE-
generated Web page appears “almost” the same asritjial
except with some minor differences. A rating of 8@%ans that
the PURE-generated Web page is similar to the ralgbut one
or two places are noticeably wrong. A little manwliting
through PURE’s GUI can help these 80% pages to apiie
same as the original one. A rating of below 80%oissidered as a
failure of PURE.

In order to make the testing Web pages less relgmgheir Web
servers’ special features, we use a Web grabbdowmload the
Web page to a local machine and test PURE withsiigd Web
page. Only 440 testing pages (of the top 500) @suzcessfully
opened in the local machine. The evaluation reisuthown in
Table 2.

Table 2. Evaluation result of PURE

Similarity | 100 | 90% | 80% | >=80% < 80%
% (Success) | (Failure)

Number 70 51 103| 224 216

Rate 16% 129 23% | 51% 49%

The results show that PURE is able to successfeltpnstruct

over 50% of the Web pages collected from the top (@0 rather,

440 of the top 500) websites. We studied the failcases and
found that most of the failures are caused by lerisistent page
structure between the one generated by MSHTML-Moderd

W3C's definition of the DOM tree.

4. DISCUSSION

Today, people have realized that most of existineb\gages are
not compliant with Web standards, which hindersabeessibility
and viability of the Web. Transforming those leg&égb pages to
be standard-compliant is necessary but will reqaitet of effort.
Our PURE tool is developed to help Web developerdd the
transformation automatically. Because some legael Yages are
very complicated and the browser may not generage plage
structures according to W3C's definition of the DQide, PURE
may not work well automatically in some cases. Bith some
human interaction, PURE can be effective for moases.
Furthermore, the PURE tool will be released as p@naosource
and free software so that the community can hejgrawe it. We
believe that PURE will evolve into a useful toolr faVeb
developers to transform legacy Web pages. Withtaohdil work
PURE may be made an option for Web page authopass the
code through before leaving the authoring tool Usedhe page’s
creation.

Web page reverse engineering can be applied to mamgr
applications. One possible application is to tramsf existing
Web pages to make them compatible with mobile dsvigoday,
mobile Web access suffers from interoperability arghbility
problems that make the Web difficult to use for thombile
phone subscribers [19]. One well-known problem katt
traditional Web pages do not provide a good brogvgixperience
on mobile devices due to their small screen sizés Problem
may be solved by using a new presentation schetyle @heet)
with which the browsers on mobile devices will tealisplay the
Web page nicely. Some popular websites now progidersion
designed specially for mobile devices such
http://www.google.com/pdandhttp://wap.oa.yahoo.com/But it
would be difficult to keep the content consistelithwhe original
Web page unless there is a tool to generate a encokeiision
automatically from the traditional website.

The reverse engineering approach introduced in PURI be

adopted to help Web developers build Web pages #nat
compatible with mobile devices based on existingsoiThat is: (1)
segment the original Web page into primary box&$;rémove

some primary boxes if necessary (e.g., large imagesvigation

links on the top of the page [20]); (3) rearranige placement of
primary boxes to fit the mobile device’s screenefBfore our
reverse engineering approach will become a valutthladation

for research work on Web standards and Mobile Web.

5. PROTOTYPE

Rather than providing additional evaluation datdhiclv are
necessarily subjective, a PURE prototype is nowilave for
public testing and comments fattp://webproject.cs.ust.hk:8004/
It is free and open source software and publisheteuGeneral
Public License (GPL) [3]. Readers are welcomeprove it or
develop applications based on it.

6. ACKNOWLEDGMENTS

This research was supported in part by Sino SoéviResearch
Institute grant SSRI01/02.EG14, “W3C Office” and Rgsearch
Grant Council grant AOE/E-01/99, “Information Tecitwogy for a
21st Century Hong Kong”. We want to thank Dan Hong,
Yongzhen Zhuang and Shan Chen for their valuahi¢ribations

to this work.

7. REFERENCES
Alexa.com.“Top 500 sites.”
http://www.alexa.com/site/ds/top 500

European Computer Manufacturers Association
(ECMA). “Standard ECMA-262: ECMAScript
Language Specificationhttp://www.ecma-
international.org/publications/standards/Ecma-262.h

GNU Foundation. “GNU General Public License”.
http://www.gnu.org/copyleft/gpl.html

[4]

John Haller. “Browser Rendering Engine Statistics”.
http:/johnhaller.com/jh/useful_stuff/browser_sttitis

[5] MaxDesign.com . “The benefits of Web Standards to
your visitors, your clients and you!”.

http://www.maxdesign.com.au/presentation/benefits

Microsoft Corporation. “Programming and Reusing the
Browser”.
http://msdn.microsoft.com/workshop/browser/prog_bro
wser_node_entry.asp

[7] Francois Nonnenmacher. “Web Standards for
business”.
http://www.webstandards.org/learn/reference/weln sta

dards for business.html. 2003

[8] Dave Raggett. “Clean up your Web pages with HTML

TIDY”. http://www.w3.org/People/Raggett/tidy

Chen Shan, Hong Dan, Vincent Shen. “An
Experimental Study on Validation Problems with
Existing HTML Webpages 'Proceedings of

International Conference on Internet Computing
(ICOMP’05), Las Vegas, 2005. pp. 373-379.

[10] The Web Standard Projeéittp://www.webstandards.org

[11] Jeffrey Veen. “The Business Value of Web Standards”
http://www.adaptivepath.com/publications/essay$farc

ves/000266.php

[12]world Wide Web Consortium (W3C). “Web Content
Accessibility Guidelines”http://www.w3.0org/TR/WAI-
WEBCONTENT

[13]World Wide Web Consortium (W3C)The global
structure of an HTML document”.
http://mww.w3.org/TR/REC-htmI40-
971218/struct/global.html

[14]world Wide Web Consortium (W3C). “Visual formatting
model”. http://www.w3.0rg/TR/REC-CSS2/visuren.html

[15]World Wide Web Consortium (W3C). Positioning HTML
Elements with Cascading Style Sheets

http://www.w3.0rg/TR/1999/WD-positioning-
19990902

[16]World Wide Web Consortium (W3C). “HTML 4.01
Specification”. http://www.w3.0rg/TR/REC-html40

[17]world Wide Web Consortium (W3C). “What is the
Document Object Model?http://www.w3.0rg/TR/DOM-
Level-2-Core/introduction.html

[18]World Wide Web Consortium (W3C). “Positioning
schemes”.
http://www.w3.0rg/TR/CSS21/visuren.html#positionin

g-scheme

[19]World Wide Web Consortium (W3C). Mobile Web Initizg.
http://www.w3.org/Mobile

[20]World Wide Web Consortium (W3C). “Mobile Web Best
Practices 1.0"http://Aww.w3.0rg/TR/2005/WD-mobile-
bp-20051017

[21] Jeffrey Zeldman:Designing with web standards™New
Riders: Berkeley, 2003. 456 pages.

