
Transforming Web Pages to Become Standard-Compliant
through Reverse Engineering

Benfeng Chen
Computer Science Department

Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

bfchen@cs.ust.hk

Vincent Y. Shen

Computer Science Department

Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

shen@cs.ust.hk

ABSTRACT
Developing Web pages following established standards can make
the information more accessible, their rendering more efficient,
and their processing by computer applications easier.
Unfortunately, more than 95% of the existing Web pages today
are not “valid” in that they do not follow some of the
recommendations (standards) of the World Wide Web
Consortium (W3C). Fixing any Web page to make it standard-
compliant is a major undertaking. There is now an open-source
tool called HTML Tidy which will attempt to fix the invalid
HTML code automatically. However, Tidy often changes the Web
page’s appearance after processing. It is not an effective tool to
transform existing Web pages to make them standard-compliant.

In this paper we report the design and implementation of PURE, a
tool that cleans up an HTML document through reverse
engineering. PURE starts with the rendering result of a given Web
page and generates valid HTML code and CSS automatically to
produce the same appearance. It is found to be effective for many
existing Web pages. A prototype is now available for public
testing and comments.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information Browsers

General Terms
Algorithms, Measurement, Performance, Design, Experimentation,
Standardization.

Keywords
W3C recommendations, Web page, HTML, HTML Tidy, Cascade
Style Sheets, rendering engine, browser.

1. INTRODUCTION
The World Wide Web Consortium (W3C) is an organization that
develops and promotes the use of standards on the Web. However,
as much as 95% of existing Web pages today are “invalid” [9] in
that they fail to conform to the W3C “recommendations”
(commonly considered “Web standards” by the community)

published since 1995 [16]. These invalid Web pages may not be
rendered consistently across platforms or by different browsers,
may not be accessible to some users, and may cause problems for
Web-based applications. The seriousness of the problem spawned
the Web Standards Project (WaSP) [10], which was established to
encourage people to design Web pages which conform to
standards in order to reduce the cost and complexity of
development, while increasing the accessibility and long-term
viability of any site published on the Web [21].

The basic idea of Web standards is to develop Web pages with
valid HTML or XHTML code and to separate content from
presentation. A Web page is composed of three parts: content,
presentation and behavior. According to Web standards, the
content should be written in valid HTML or XHTML code; the
presentation (e.g., layout, font, color, etc.) should be specified by
valid CSS code; and the behavior should be controlled by valid
JavaScript (officially, the ECMAScript [2]) through the DOM
interface [17]. Figure 1 shows the “trinity” of Web standards [21].
It is necessary for a Web page to be compliant with Web
standards because of the following reasons [5][11]:

• Its accessibility is wider because the CSS-based presentation
is more flexible for different devices, browsers or
handicapped people.

• Its size is smaller and bandwidth for access is reduced. For
example, ESPN.com is saving 2TB of traffic per day by
redesigning Web pages according to Web standards [7].

• It is friendly for machine processing. Without the misused
table and font tags for layout and appearance in the code,
other computers can “understand” the Web page’s content
better.

Figure 1. The trinity of Web standards

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A at WWW2006, 23rd-26th May 2006, Edinburgh, UK
Copyright 2006 ACM 1-59593-281-x/06/05...$5.00.

However, as we noted earlier, most Web pages on the Internet
today are not standards-compliant [9]. A very common problem is
that the HTML TABLE element is widely used for page layout.
Note that the TABLE element is intended to mark up truly tabular
information (“data tables”). But, due to its flexibility, content
developers often use the TABLE element to layout pages (“layout
tables”). They should have used the Cascade Style Sheets (CSS)
to layout pages for all the presentation effects [12]. People believe
that about 99% of existing websites are obsolete as far as Web
standards are concerned [21]. Rewriting these legacy Web pages
will incur a huge cost of time and money. Therefore, an automated
tool will be very useful if it can help Web developers transform
existing Web pages to those that are standards-compliant while
keeping the appearance consistent with the original.

Fixing an existing HTML document to make it standard-
compliant automatically is a difficult problem. The W3C has
endorsed an open-source tool called “HTML Tidy” which can
automatically fix a Web page’s invalid code [8]. But it does not
convert presentation-related elements from existing HTML code
to using style sheets. Furthermore, it often fails when fixing a
complicated Web page, especially if its layout is designed with
nested HTML tables. Unfortunately, nested layout tables are
widely used in legacy Web pages and various tricks are frequently
used to extend the presentation effect of tables. A quick study
shows that of the 500 most popular websites [1], about 470 of
them use the TABLE element to control the layout. The
appearance of these Web pages often changes drastically after
they are processed by Tidy. Figure 2 shows an example
(http://www.imdb.com/, No. 46 of the top 500 most popular
websites on September 1, 2005): Figure 2 (a) is the original page
and Figure 2 (b) shows parts of the resulting page after processing
by Tidy, which produced a long thin page. This is indeed an
extreme example but, since many of the Web pages of the top
500websites are quite complicated, Tidy messes up the
appearance of at least 80% of them.

Figure 2 (a). Original Web page

Figure 2 (b). Parts of the result after processing by HTML
Tidy

This paper presents an automated tool called “PURE” (“Page
clean-Up through Reverse Engineering”) which uses the reverse
engineering approach to transform legacy Web pages to make
them compliant with Web standards while keeping the appearance
consistent with the original. PURE first uses a popular Web
browser to render the original Web page to be processed (the
“preprocessing” step). It then examines the layout of the Web
page presented in the browser’s window. It segments the original
Web page’s content into small rectangles (called “boxes”
thereafter). It retrieves the position and size of each box through
the browser-generated page structure (in the form of a DOM tree
[17]). A recursive algorithm is designed to reconstruct the layout
of the Web page using the CSS box model [15]. At the end of this
step a new Web page is generated which contains a number of
empty boxes (the “layout reconstruction” step). In the last step,
PURE fills in the content for each box. It takes the source code for
each box from the original Web page, transforms it into standard-
compliant code, and then puts the resulting code into the
corresponding box in the new page (the “box filling” step). The
home page of www.imdb.com after processing by PURE is shown
in Figure 3.

Figure 3. Result after processing by PURE

Our preliminary evaluation shows that over 50% of the home
pages of the top 500 websites can be successfully transformed
through this three-step approach automatically. The failures are
mostly due to some special features of the browser-generated page
structure which is inconsistent with the DOM tree as defined by
W3C. Most of these problems could be fixed with some human
interaction. We therefore believe that PURE can become a useful
tool to help Web developers to transform legacy Web pages.

The highlights of our approach are:

• We are able to separate the presentation from content. To
understand a Web page’s presentation from its source code is
a very difficult task unless we build a rendering engine
ourselves. In our reverse engineering approach, we can
obtain the presentation from a popular browser (such as the
Microsoft Internet Explorer (IE)). The major task is to build
the same presentation using CSS, which is much easier than
building a rendering engine.

• We avoid the difficulty of parsing the original HTML code
by getting the HTML DOM tree from the chosen browser.

• We avoid the difficulty of handling ambiguous code and
guessing the author’s intention. The invalid code is often
ambiguous. For example, the developer may have left out
certain closing tags and the browsers must guess where to
place them if some are missing. It is reasonable to assume
that the authors have tested the Web pages using IE before
they upload them to a Web server. So we could use IE’s
rendering result as the starting point for reverse engineering.

• We use a divide-and-conquer strategy by first segmenting the
Web page into small boxes and then reconstructing these
boxes separately. If a certain box has problems, it will not
affect the others and the author can manually fix the
problematic boxes one by one.

This paper is organized as follows: Section 2 explains PURE’s
approach in detail. Section 3 describes our evaluation of PURE.
In Section 4, the future work to make PURE more effective is
discussed.

2. THE REVERSE ENGINEERING
APPROACH

2.1 Background
The content of an HTML document is contained in the BODY
element. All elements which may appear in BODY can be
classified into 2 kinds: the “block-level” elements and the “inline-
level” elements. Generally, block-level elements may contain
inline-level elements and other block-level elements. Inline-level
elements may contain only data and other inline-level elements.
For example, the elements P, DIV , TABLE, UL and H1 are block-
level elements and B, SPAN, FONT, A and IMG are inline-level
elements. During rendering, block-level elements always begin on
new lines, but inline-level elements do not [13].

Generally, a Web browser parses the HTML document into a tree
structure and then begins rendering based on the tree. The tree
structure is often called the HTML DOM (Document Object
Model) tree. The W3C’s visual formatting model gives the idea
on how a browser renders an HTML document based on its DOM
tree [14]. Each node in the DOM tree generates one or more
boxes on the screen if it is visible. A visible inline-level element
may generate more than one box when the text within it spans
several lines. A visible block-level element always generates one
box because it will begin with a new line. We can see an
element’s box boundaries by adding the STYLE attribute of CSS
to specify the border of the box. For example:

<P style="border: 1px solid red">

some text</P>

If we specify the border of each element in the document body,
we can see that a Web page’s appearance is composed of many
nested boxes. Modern browsers provide a friendly programming
interface for developers to access a page’s DOM tree structure and
each element’s box information (e.g., position, size, source code,
etc.). Therefore, it is possible for us to reverse engineer a Web
page box by box through the browser’s rendering result.

2.2 System Overview
The basic idea of PURE’s approach is to reconstruct the Web
page’s layout using the CSS box model and then fill in the content
for each box. When designing page layout with CSS, people
commonly use the DIV element to represent a box and use the
style sheet to position the box of the appropriate size. Since the
Web page is composed of many nested boxes, a straightforward
way is to use DIV to build every box in the original page and then
render the new CSS-based page. But this will be messy. For
example, the code “<P>some bold text</P> ”
generates two boxes. One box is for element P and the other is
for element B. Wrapping each box with DIV results in the code

“<DIV><P>some <DIV>bold</DIV>
text</P></DIV> ”, which breaks the paragraph. This is not
acceptable. Another problem of this simple method is that many
redundant boxes will be generated due to the HTML table. For
example, the code “<TABLE><TR><TD>some
text</TD></TR></TABLE> ” generates three boxes because
there are three elements here: TABLE, TR, and TD. This will lead
to redundant code as “<DIV><DIV><DIV>some
text</DIV></DIV></DIV> ”. Actually, we only need one
DIV . From this example, we can also see that HTML table-based
layout is not efficient. The above two examples show that we
cannot simply use every box in the original page to build the
layout of the new page. Instead, we should choose only the
necessary boxes. We call these boxes “primary” boxes. The
primary boxes cover all the content and are not overlapping with
each other. As a result, the primary boxes segment the page into
individual rectangles and they will not affect each other. The
element which satisfies any of the below conditions is considered
a primary box:

• The TD/TH elements within the layout table (layout table
cell)

• The leaf block-level elements outside the layout table

A leaf block-level element is a block-level element whose
descendant elements in the DOM tree are all inline-level elements.
In other words, there is no block-level element inside the leaf
block-level element.

In the new Web page, we use CSS positioning techniques [15] to
make these primary boxes appear in the same positions as they are
rendered by the chosen browser. At the end of this step, the layout
reconstruction is finished and the next step is to fill in the content

for each primary box. Since each box is corresponding to an
element in the DOM tree, the content inside the box is the code of
that subtree which has that element as root. Therefore, the
approach to fill in the content of each box is to go though its
corresponding subtree top-down and generate standard-compliant
code.

Figure 4 shows the flow chart of the PURE system. These three
major steps are explained further below.

2.3 Preprocessing
This step has two tasks: (1) generate the input Web page’s
structure by passing it to a popular browser’s rendering engine; (2)
format the page’s structure for later processing. The primary
boxes are supposed to cover all the page content. But without
formatting the document structure, they may fail to do so. For
example, the code “<BODY><P>text one</P> text two
text three</BODY> ” will only generate one
primary box, which is the P element. Therefore, the text “text
two ” and element B will be missing according to the primary box
coverage. Our Lemma 1 can solve this problem.

Lemma 1: In the HTML DOM tree, if inline-level elements or
text nodes are the siblings of a block-level element, they are
implicitly enclosed by the block-level element.

It is easy to proof this lemma. The block-level element always
begins with a new line and ends with a line break, which means
any element before or after the block-level element will end or
begin with a line break. In other words, there is an implicit block-
level element containing the inline-level elements or text nodes
around a block-level element. As for the above example, the code
“<BODY><P>text one </P><P>text two text
three</P></BODY> ” has the same appearance with the

Figure 4. PURE system overview

Box filling

Filling
each box

Layout
reconstruction

Layout
recons-
truction

Segmen-
tation

Format
document

Legacy
Web page

Web page
rendering
engine

New Web page
with external

CSS

Preprocessing

original one. The document formatting process inserts the general
block-level element DIV to those places where there are implicit
block-level elements. As a result, the above example code will
become “<BODY><P>text one </P><DIV>text two
text three</DIV></BODY> ”. Figure 5 shows the
process. After formatting, two elements will be marked as primary
boxes: the elements P and DIV . We can see that they cover the
whole content of the page.

Figure 5. An example of formatting code

2.4 Layout reconstruction
The tasks of this step are: (1) identify the primary boxes; (2)
create a new page with the primary boxes in the same position.
The primary box is defined as the layout table cell or the leaf
block-level element outside the layout table. The primary box
identification process goes through the DOM tree top-down and
checks every element. If an element is considered a primary box,
its descendant elements will not be processed. This guarantees
that none of the primary boxes overlaps each other. Note that it is
often difficult to distinguish between a layout table and a data
table unless we develop an intelligent algorithm which can
“understand” the relationship among the content of table cells.
This is not the major task of PURE. Instead, we use a simple but
effective way. From our observation, when a cell of table contains
block-level elements (e.g., P, TABLE, etc), the table is often used
for layout. On the other hand, the cells of data tables mostly only
contain inline-level elements or text. To identify the leaf block-
level element is easy. After the document formatting process, all
elements at the same level (i.e., they have the same parent element)
are either all block-level or all inline-level. If a block-level
element outside the layout table has inline-level elements, it will
be made a primary box.

The primary boxes form the layout of the Web page. The next task
is to create these boxes in a new Web page with the same
positions. As mentioned before, we use DIV element to represent
a box and using CSS positioning techniques to control the
location of each box. This is a typical CSS box-model based
layout design method, which is widely used by the Web developer
community. There are three positioning schemes in W3C’s CSS
recommendation: “normal flow”, “floats” and “absolute
positioning” [18]. These position schemes are so flexible and
powerful that there are always various ways to construct a single
layout by using a combination of these schemes. PURE provides
two different positioning methods to reconstruct the layout. One is
to use absolute positioning and the other is to use a combination
of normal flow and floats.

Using the absolute positioning scheme to construct layout is
simple and straightforward. PURE generates the boxes one by one

and specifies the position and size of each box in the external CSS
file. The body of the HTML code is like:

And the external CSS code is like:

We can see that the document body structure is a two-level tree
and all the primary boxes are in the same level with the same
parent element BODY. This document structure may not be
identical to the original page. Another problem is that, when
developers change a box’s size, they need to recalculate the
positions of its neighbor boxes and update them in the CSS file.
So this approach is not flexible. If the number of primary boxes is
not big, this approach is acceptable. But for a complicated page
with many primary boxes, this approach may not be suitable.

The second approach, which uses a combination of normal flow
and floats schemes to construct the layout, is more flexible than
the first one. It does not specify the position of each box.
Developers are free to edit an individual box and do not need to
update the positioning code of other boxes.

The normal flow is the default scheme in CSS box positioning. In
this scheme, boxes flow vertically starting at the top of their
containing block, with each one of them placed directly below the
preceding one. The effect is illustrated in Figure 6.

Figure 6. Normal Flow Positioning

#box1 {width: 300px; height: 300px;}

#box2 {width: 200px; height: 300px;}

…

<DIV>

<DIV id=”box1”>text one</DIV>

<DIV id=”box2”>text two</DIV>

</DIV>

text one

text
two

<BODY>

<DIV id=”FirstBox”> … </DIV>

<DIV id=”SecondBox”> … </DIV>

…..

<DIV id=”LastBox”> … </DIV>

</BODY>

#FirstBox {position:absolute; top: 10px;
left: 10px; width: 800px; height:
100px;}

#SecondBox {position:absolute; top:
110px; left: 10px; width: 200px; height:
400px;}

….

#LastBox {position:absolute; top: 660px;
left: 10px; width: 800px; height:
200px;}

The floats scheme works in the horizontal direction. It is achieved
by setting an element’s float style to either left or right . A
box with floats style specified is shifted as far to the right or left
of its containing block as possible. If two or more adjacent
elements are floated, their tops are positioned on the same line
(side by side) if there is sufficient horizontal space to
accommodate them. Figure 7 illustrates this effect.

Figure 7. Floats Positioning

With normal flow and floats positioning techniques, we can use
nested DIV elements to construct any kind of layout of existing
Web pages. By inserting sub-boxes with normal flow positioning,
a box is split horizontally into rows. By inserting sub-boxes with
floats positioning, a box is split vertically into columns. Therefore,
we can construct layout like the way an HTML table does it. But
this CSS approach is more flexible than the HTML table. In the
HTML table, the border lines of columns are aligned across rows
and border lines of rows are aligned across columns. In this CSS
approach, a box can be freely split into rows and columns without
forced alignment.

Considering the process in which Web developers design page
layout with nested DIV elements and CSS, we designed a top-
down recursive algorithm to construct the layout automatically. In
the beginning, the Web developers commonly segment a page
vertically or horizontally into several major rectangles (boxes).
Then they segment each major box into several sub-boxes if
necessary. After that, they may segment each sub-box into even
smaller boxes. By repeating this process recursively and creating
boxes level by level, the desired layout is finally achieved. The
PURE’s algorithm to construct page layout with nested DIV
elements and CSS is similar to this process. We assume that all
the primary boxes are already at their right places (see example in
Figure 8 (a)). At first, we segment the page from top to bottom
with boxes. The segmentation method is: we set a horizontal
virtual line on the screen. If this line does not cut across any
primary box, we consider this line the border line between two
boxes. We move the virtual line down and check whether it
should be a border line or not. After all the horizontal border lines
are detected, the first level segmentation is done and the page is
composed of a number of boxes stacked from top to bottom
(Figure 8 (b)). Then we try to segment each of these boxes
individually. A vertical virtual line inside a box moves from left to
right and checks whether it should be a border line. After all the
vertical border lines within each box are detected, the second level

segmentation is done (Figure 8 (c)). The boxes generated in the
second level segmentation are further segmented in a different
direction to generate the third level boxes (Figure 8 (d)). This
recursive process is repeated until no more boxes can be
segmented, which means that the last level boxes are all primary
boxes. Thus, the page layout construction is done.

Figure 8. Layout reconstruction algorithm

As for the example in Figure 8, PURE will generate the code
below. For simplicity, the corresponding CSS code is not shown
here. The code forms the layout of the new Web page and reserves
the space for primary boxes. The next step is to fill in the code for
each primary box.

<BODY>

<!—- first level -->

<DIV>

<!—- code for primary box A -->

</DIV>

<DIV>

 <!—- second level -->

 <DIV>

 <!—- code for primary box B -->

 </DIV>

 <DIV>

 <!—- third level -->

 <DIV>

 <!—- code for primary box C -->

#box1 {float: left; width: 300px;
height: 300px;}

#box2 {float:left; width: 200px;
height: 300px;}

…

<DIV>

<DIV id=”box1”>box one</DIV>

<DIV id=”box2”>box two</DIV>

</DIV >

box one box
two

Original page with
primary boxes

(a)

First level
segmentation

(b)

Second level
segmentation

(c)

Third level
segmentation

(d)

A

B C

D

 </DIV>

 <DIV>

 <!—- code for primary box D -->

 </DIV>

 </DIV>

</DIV>

</BODY>

Figure 9 shows the layout of the example page in empty boxes
following this process.

Figure 9. Layout in empty boxes

2.5 Box filling
The last step is to fill in the content of each primary box in the
new Web page. Because each primary box is corresponding to a
subtree in the DOM tree of the original Web page, PURE goes
through the subtree top-down and generates valid code for each
node of the tree. Some visual effects (e.g., background color, text
alignment and font, etc.) are inherited from ascendant nodes
which are outside the primary box. Therefore, the ascendant nodes
should be scanned to extract their visual effects and then we use
style sheet to format the nodes inside the box. The presentation-
related elements inside the box are removed by using style sheet
during this process. For example, the HTML elements FONT, B, I
and U will be replaced by the SPAN element and style sheet is
used to specify the text appearance. By doing so, all the
presentation code in the original Web page is stripped out so that

the new HTML document is purely for content and its
presentation is purely controlled by CSS. PURE then uses HTML
Tidy to make the final clean-up of the generated code for each box.

3. IMPLEMENTATION AND
EVALUATION

3.1 Selection of Web page rendering engine
As discussed above, the reverse engineering approach first uses a
browser’s rendering engine to generate a Web page’s structure.
Table 1 lists the rendering engines used in well-known browsers
and their popularity statistics in October 2005 [4].

Table 1. Rendering engine statistics

Rendering Engine Used by browsers Popularity

MSHTML-Modern Internet Explorer 6.0 82.51%

MSHTML-Legacy Internet Explorer
4.0/5.0/5.5

3.94%

Gecko Mozilla, Firefox,

Netscape 7.x

9.97%

KHTML Safari, Konqueror 1.62%

Opera Opera – all versions 0.83%

Netscape Netscape 3.x/4.x 0.07%

The rendering engine “MSHTML-Modern”, which is used by
Microsoft Internet Explorer 6.0, is by far the most popular. It is
reasonable to assume that most Web page developers would test
their creation with this rendering engine before uploading it to a
public Web server. Microsoft also provides sufficient
documentation about programming with MSHTML-Modern [6]
so that we can obtain enough information about the Web page’s
structure. For these reasons we use it in PURE. Note that our
approach will work equally well with any other browser as long as
the structure information is available.

In order to embed MSHTML-Modern in PURE, the software is
developed on Windows XP in C++.

3.2 Graphic user interface
Since we do not expect PURE to be perfect in fixing invalid Web
pages automatically, it is designed to have a graphical user
interface (GUI) so that the user may fix some problems
interactively whenever needed. Through PURE’s GUI the user
may adjust the resulting layout conveniently. PURE uses HTML
Tidy to make sure the code used to fill in the boxes are valid
HTML code. However, the user is given the opportunity to
change that code manually if Tidy’s result is not suitable. Figure
10 shows an example of a PURE pop-up window which the user
may use to fix the HTML code easily.

Figure 10. Pop-up window for code fixing.

3.3 Evaluation
Our evaluation is to test whether the PURE tool can successfully
reconstruct existing Web pages automatically. The normal flow
and floats positioning technique is used to generate the layout
because it is much more flexible than absolute positioning. The
testing Web pages used are the homepages of the top 500 websites
[1]. These top websites are mostly portal websites and their
homepages are among the most complicated cases. Also, there are
different languages used in the top 500 websites (242 English
sites, 121 Chinese sites, 45 Japanese sites, etc.). We can also test
PURE’s robustness on processing different languages. The
similarity between the original Web page and PURE-generated
Web page is used as the subjective evaluation criteria by the
authors. A rating of 100% means that the PURE-generated Web
page appears the same as the original. A rating of 90% (such as
the IMDB website example in Figure 3) means that the PURE-
generated Web page appears “almost” the same as the original
except with some minor differences. A rating of 80% means that
the PURE-generated Web page is similar to the original, but one
or two places are noticeably wrong. A little manual editing
through PURE’s GUI can help these 80% pages to appear the
same as the original one. A rating of below 80% is considered as a
failure of PURE.

In order to make the testing Web pages less relying on their Web
servers’ special features, we use a Web grabber to download the
Web page to a local machine and test PURE with this saved Web
page. Only 440 testing pages (of the top 500) can be successfully
opened in the local machine. The evaluation result is shown in
Table 2.

Table 2. Evaluation result of PURE

Similarity 100
%

90% 80% >=80%

(Success)

< 80%

(Failure)

Number 70 51 103 224 216

Rate 16% 12% 23% 51% 49％

The results show that PURE is able to successfully reconstruct
over 50% of the Web pages collected from the top 500 (or rather,
440 of the top 500) websites. We studied the failure cases and
found that most of the failures are caused by the inconsistent page
structure between the one generated by MSHTML-Modern and
W3C’s definition of the DOM tree.

4. DISCUSSION
Today, people have realized that most of existing Web pages are
not compliant with Web standards, which hinders the accessibility
and viability of the Web. Transforming those legacy Web pages to
be standard-compliant is necessary but will require a lot of effort.
Our PURE tool is developed to help Web developers to do the
transformation automatically. Because some legacy Web pages are
very complicated and the browser may not generate the page
structures according to W3C’s definition of the DOM tree, PURE
may not work well automatically in some cases. But with some
human interaction, PURE can be effective for most cases.
Furthermore, the PURE tool will be released as an open source
and free software so that the community can help improve it. We
believe that PURE will evolve into a useful tool for Web
developers to transform legacy Web pages. With additional work
PURE may be made an option for Web page authors to pass the
code through before leaving the authoring tool used for the page’s
creation.

Web page reverse engineering can be applied to many other
applications. One possible application is to transform existing
Web pages to make them compatible with mobile devices. Today,
mobile Web access suffers from interoperability and usability
problems that make the Web difficult to use for most mobile
phone subscribers [19]. One well-known problem is that
traditional Web pages do not provide a good browsing experience
on mobile devices due to their small screen size. This problem
may be solved by using a new presentation scheme (style sheet)
with which the browsers on mobile devices will use to display the
Web page nicely. Some popular websites now provide a version
designed specially for mobile devices such as
http://www.google.com/pda and http://wap.oa.yahoo.com/ . But it
would be difficult to keep the content consistent with the original
Web page unless there is a tool to generate a mobile version
automatically from the traditional website.

The reverse engineering approach introduced in PURE can be
adopted to help Web developers build Web pages that are
compatible with mobile devices based on existing ones. That is: (1)
segment the original Web page into primary boxes; (2) remove
some primary boxes if necessary (e.g., large images or navigation
links on the top of the page [20]); (3) rearrange the placement of
primary boxes to fit the mobile device’s screen. Therefore our
reverse engineering approach will become a valuable foundation
for research work on Web standards and Mobile Web.

5. PROTOTYPE
Rather than providing additional evaluation data, which are
necessarily subjective, a PURE prototype is now available for
public testing and comments at http://webproject.cs.ust.hk:8004/.
It is free and open source software and published under General
Public License (GPL) [3]. Readers are welcome to improve it or
develop applications based on it.

6. ACKNOWLEDGMENTS
This research was supported in part by Sino Software Research
Institute grant SSRI01/02.EG14, “W3C Office” and by Research
Grant Council grant AOE/E-01/99, “Information Technology for a
21st Century Hong Kong”. We want to thank Dan Hong,
Yongzhen Zhuang and Shan Chen for their valuable contributions
to this work.

7. REFERENCES
[1] Alexa.com. “Top 500 sites.”

http://www.alexa.com/site/ds/top_500

[2] European Computer Manufacturers Association
(ECMA). “Standard ECMA-262: ECMAScript
Language Specification”. http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[3] GNU Foundation. “GNU General Public License”.
http://www.gnu.org/copyleft/gpl.html

[4] John Haller. “Browser Rendering Engine Statistics”.
http://johnhaller.com/jh/useful_stuff/browser_statistics

[5] MaxDesign.com . “The benefits of Web Standards to
your visitors, your clients and you!”.
http://www.maxdesign.com.au/presentation/benefits

[6] Microsoft Corporation. “Programming and Reusing the
Browser”.
http://msdn.microsoft.com/workshop/browser/prog_bro
wser_node_entry.asp

[7] François Nonnenmacher. “Web Standards for
business”.
http://www.webstandards.org/learn/reference/web_stan
dards_for_business.html. 2003

[8] Dave Raggett. “Clean up your Web pages with HTML
TIDY”. http://www.w3.org/People/Raggett/tidy

[9] Chen Shan, Hong Dan, Vincent Shen. “An
Experimental Study on Validation Problems with
Existing HTML Webpages ”. Proceedings of

International Conference on Internet Computing
(ICOMP’05), Las Vegas, 2005. pp. 373-379.

[10] The Web Standard Project. http://www.webstandards.org

[11] Jeffrey Veen. “The Business Value of Web Standards”.
http://www.adaptivepath.com/publications/essays/archi
ves/000266.php

[12] World Wide Web Consortium (W3C). “Web Content
Accessibility Guidelines”. http://www.w3.org/TR/WAI-
WEBCONTENT

[13] World Wide Web Consortium (W3C). “The global
structure of an HTML document”.
http://www.w3.org/TR/REC-html40-
971218/struct/global.html

[14] World Wide Web Consortium (W3C). “Visual formatting
model”. http://www.w3.org/TR/REC-CSS2/visuren.html

[15] World Wide Web Consortium (W3C). Positioning HTML
Elements with Cascading Style Sheets
http://www.w3.org/TR/1999/WD-positioning-
19990902

[16] World Wide Web Consortium (W3C). “HTML 4.01
Specification”. http://www.w3.org/TR/REC-html40

[17] World Wide Web Consortium (W3C). “What is the
Document Object Model?”. http://www.w3.org/TR/DOM-
Level-2-Core/introduction.html

[18] World Wide Web Consortium (W3C). “Positioning
schemes”.
http://www.w3.org/TR/CSS21/visuren.html#positionin
g-scheme

[19] World Wide Web Consortium (W3C). Mobile Web Initiative.
http://www.w3.org/Mobile

[20] World Wide Web Consortium (W3C). “Mobile Web Best
Practices 1.0”. http://www.w3.org/TR/2005/WD-mobile-
bp-20051017

[21] Jeffrey Zeldman. “Designing with web standards”. New
Riders: Berkeley, 2003. 456 pages.

