
A Semantic-Web based Framework for Developing
Applications to Improve Accessibility in the WWW

Christos Kouroupetroglou
Dept. of Applied Informatics,

University of Macedonia
Thessaloniki, Greece

+30 2310 791604
kourou@teithe.gr

Michail Salampasis
Department of Informatics,

T.E.I. of Thessaloniki
Thessaloniki, 57 400, Greece

+30 2310 791284
cs1msa@it.teithe.gr

Athanasios Manitsaris
Dept. of Applied Informatics,

 University of Macedonia
Thessaloniki, Greece

+30 2310 891898
mantis@uom.gr

ABSTRACT
One of the biggest issues the World Wide Web (WWW)
community has to overcome is accessibility for all. The rapid
expansion of the WWW using problematic web authoring
practices, together with the dominance of the desktop metaphor in
web page design has raised many WWW accessibility problems
for people with disabilities. In this paper we present a what may
be termed as a "Semantic Web application framework" which
allows different applications to be designed and developed for
improving accessibility of the WWW. Apart from the
architecture, the tools and the technologies that compose the
framework, the key idea of the framework is that it aims at
promoting the idea of creating a community of people federating
into groups each playing a specific role: ontology creators
creating concepts using an ontological approach to describe
various elements of the WWW, annotators using concepts to
annotate specific pages, user-agent developers creating tools
based on the framework, and finally end-users (people with
disabilities) that use these tools for their benefit. Within the
proposed framework, these groups cooperate and interact with
each other, having as their ultimate goal the improvement of
WWW accessibility.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information browsers.

General Terms
Design, Measurement, Management.

Keywords
Semantic web, metadata, RDF, voice browser, accessibility,
information seeking.

1 INTRODUCTION
This paper presents a generalised application framework, which
enables applications for improving accessibility in the WWW to
be designed and developed within an open and extensible
underlying framework. The framework is based on the idea of the

Semantic Web and it could be utilised to provide the basis for
developing tools and applications (user agents in more formal
terms) for augmenting mobility and information seeking
performance in the WWW for people with disabilities. One key
objective of the proposed framework is to promote the idea of
forming communities of collaborating people each playing
specific roles in the framework. In other words the proposed
application framework, like any other metadata scheme, signifies
community membership [16].
There are many different accessibility and information seeking
problems in the WWW depending on the type of user disability,
the information need that must be satisfied, the level of expertise
of the user, how the web content was created, the information task
at hand etc [2][4][21]. In the following paragraphs of this
introductory section we will describe accessibility problems when
people with disabilities use the WWW. However, it is not our
goal to make a thorough discussion of accessibility and other
mobility and information access problems in the WWW.
Although the framework could be utilised in any situation in
which some form of annotation could be beneficially applied to
facilitate mobility and information access in general (e.g. visually
impaired people, elderly), in the rest of this paper we will focus
on accessibility problems of visually impaired (VI) people for two
reasons. First because we have implemented a voice web browser
based on the suggested application framework [22], therefore we
possess experience about this type of disability and associated
accessibility problems. This facilitates our need to give some
specific examples of how the generalised framework could help
the development of applications addressing specific accessibility
problems. But also, because visually impaired are probably the
best example of web users that their disability (regarding
navigating and accessing information from the WWW) may be
compensated, if support based on our framework is provided.
After the discussion of accessibility problems, in this introduction
we will also shortly describe the framework and how we envisage
that it could act as a foundation and an underlying platform for
creating tools and applications that address the accessibility issue
in the WWW.

 Nowadays, web page design is eminently dominated by the
desktop metaphor and generally web page authoring uses
unreliable, variable and inconsistent authoring practices. The
layout of a web page, the use of various fonts, colors, images, and
other visual cues convey navigational and semantic information to
sighted users. Unfortunately these visual cues are not accessible
by people with disabilities such as blind users [6][9]. For
example, a list of links appearing in a table in the left side of a
web page with different font and background color is immediately
associated by a sighted user with the concept of a navigational

mailto:kourou@teithe.gr
mailto:cs1msa@it.teithe.gr

menu. On the other hand, a blind user using a voice browser
usually understands the same element as a table with links within
its cell. He might conceive it as a “navigational menu” concept,
but that will happen only after browsing and listening to its
contents several times. Apparently this process makes within web
page and across document browsing very inefficient and develops
high cognitive overhead.
The latter exposes another problem that originates from the
misuse of HTML tags from web developers. One of the basic
principles in developing accessible web pages is to use HTML
tags correctly to make functional mark-up. For example, using an
H1 tag to make a certain text appear in bigger fonts without being
a level one heading is a wrong but often used technique. Or a H2
tag may appear without H1 for example. Another common use of
HTML tags which causes problems is the use of the TABLE tag
for layout and lining reasons without having any tabular data
within. The visually conveyed information in these cases is
missed and sometimes it confuses even more blind users who use
screen readers or voice browsers to read them.
Generally this lack of accessibility leads to poor navigation,
mobility and consequently inefficient information access for VI
users. Harper [9] has introduced the notion of travel and travel
objects to draw an analogy between web navigation and travel in
the real world, in an effort to improve web accessibility for VI.
Although Goble’s contribution served the need for a mobility
analysis framework, Yesilada et. al. [28] have suggested that a
more systematic foundation is required for engineering tools in a
more systematic way that will support mobility.
Most of the blind users today use programs such as generalised
screen readers and specialised voice browsers for their web
browsing. A basic functionality of these tools is that they serialize
a web page into a simple text. This serialization often brings
uninteresting parts of a web page (e.g. advertisement banners and
other peripheral material) in front of the main content of a web
page. This fact disappoints, upsets and disorientates users. To
avoid this “noise” of useless information, voice browsers and
screen readers provide additional features such as listening to the
links or the headings of a web page. These features provide a
quicker access to some parts of a web page that are difficult to
reach using the simple serialization. However, the misuse of
HTML tags sometimes disables their usability and creates
additional problems to browsing within a page.
In addition to problems related to within page browsing, blind
users do not have the ability to scan quickly a web page in order
to attain a digest and a general conception of it. Scanning is one of
the most crucial sub-processes of sighted users when seeking for
information in the web. Programs may provide some kind of
scanning simulation using various techniques of summarization.
However, these again depend on how well structured and
authored are the web pages.
The discussion above illustrates that the problem of web
accessibility for all has many facets, and such as, is the focus of
many emerging areas of study. Each area may contribute a little
bit (depending on the specific problem) to produce together with
other techniques an overall efficient web navigation and effective
information access for people with disabilities. In that context,
one contribution of our application framework is that it portrays
the backdrop for the work of different user agents to complete
activities that will enhance web accessibility for people with
disabilities. Our research effort aims at designing what may be

termed as a "Semantic Web application framework" to support the
development of accessible WWW applications for all. The
framework suggests an architecture that can be generalized and
applied in developing WWW applications for many types of
accessibility problems. However, the framework as it is presented
and discussed in the rest of this paper is focused particularly in the
accessibility problems related to the information seeking process
of blind users in the web.
A variation of techniques and strategies can be used for
information seeking in the WWW. Browsing is one of them and it
is the specific strategy that the actual implementation of the
SeeBrowser tool that is based on the framework tries to improve.
Browsing is separated in across document and within document
browsing. The tools that were developed based on the framework,
for this specific project, aim in improving and solving problems
for both types of browsing.
The proposed application framework delineates an architecture
which in our case is instantiated by a set of software tools that we
will describe in the following sections. But, it also presupposes a
community of people separated into groups, each playing a
different role. The first group is ontology creators responsible for
creating concepts using an ontology editor. The second role is
played by annotators. Annotators use available concepts to
annotate specific web pages, aiming at increasing their
accessibility. Third, user-agent developers that create tools based
on and exploiting the framework. The last group is end-users
(people with disabilities) that use user-agents such as the voice
web browser presented later in this paper. The roles of the groups
of people envisioned in our proposed framework will be presented
in parallel with the basic tools that compose the application
framework. These groups need to interact and cooperate with each
other. This cooperation and interaction is another crucial part of
the framework and it is also discussed in the paper.

2 A SEMANTIC WEB APPLICATION
FRAMEWORK

Before we describe the application framework we review some
earlier work that partially inspired us. As already discussed
earlier, one of main problems in within document browsing, is the
reconstruction of web pages by serialization. This was realized
quite early and several solutions for this problem were suggested.
Some of these solutions presented by Tagaki & Asawaka [3][25]
and Huang & Sundaresan [11] was based on a transcoding server
which transforms web pages according to specific annotation and
patterns. The transformation process reconstructs the web pages
in a way that makes navigation for blind people easier. The
transcoding server approach though, had some drawbacks
presented by Hanson & Richards [8]. In addition an interesting
approach in storing and retrieving annotations is presented in the
Annotea project. The concepts of using annotations, client-side
architecture and having the annotations stored on a server are
fundamental in our framework too.
One of the latest advances in web technologies, the Semantic
Web, came as the ideal background to support all of them. The
Semantic Web raised a great deal of discussion and many
expectations. Marshall & Shipmann [15] present, categorize and
discuss the various views and expectations raised by the Semantic
Web. Some people see the Semantic web as library cataloguing
system for the web. Others hope that it will increase machine
awareness of web content, improving this way searching facilities
in the current web. One other category uses Semantic Web as a

way for metadata syndication, enabling the communication
among various information sources and agents. This latter
approach is the one that our framework is closer to. In our
research work we envisage the Semantic Web as a metadata layer
upon the current WWW, through which user agents will
syndicate, interact and collaborate in order to improve
accessibility. These metadata can be produced by various sources
and can be used by many users and agents for a variety of goals.
At the cornerstone of our application framework are metadata and
their manipulation. Our metadata are stored and retrieved in a
storage server using RDF/XML formatted files. RDF is the
standard used for metadata in the Semantic Web and is a language
for describing resources. We use this language for describing web
pages in a way that will help to improve their accessibility.
Storing and retrieving metadata from a storage server, allows
different users to contribute to the development of metadata at the
same time, thus forming a community of users contributing in
developing the Semantic Web.
A key element in describing resources in the semantic web is the
vocabulary used for this description. The vocabulary can vary
depending on the goal of the description. There are already many
vocabularies such as DC, Foaf, etc, that can describe various
resources in various ways. For the description of a web page in
order to improve its accessibility by blind users there are specific
needs that were not covered by any of the existing vocabularies.
To satisfy these needs we use an ontological approach of OWL
(Web Ontology Language) to create a vocabulary especially for
them. This solution was preferred among other because is one of
the most commonly followed in the Semantic Web nowadays.
Our voice web browser finally utilizes the two previous
characteristics, vocabulary and metadata in RDF. All three of
them together are the key points of our framework. Figure 1
illustrates an overview of the framework and the relationship
between the three key tools used in our framework. SeEBrowser
finally uses the outcome from both the annotation tool, which are
the metadata, and from ONAR, which is the vocabulary used for
the annotation.

Annotation
Storage
Server

Knowledge
Representation

OWL

ONAR

Other
ontology
editors

Semantic
Annotation

RDF

Annotation
tool

Other
Annotation
Tools

Knowledge
Utilization

(for accessibility
problems solution)

SeEBrowser
Other
agents
using

annotations

Semantic-Web Based
Framework

Figure 1 : The suggested framework scheme

Of course, it should be said that the framework could be
generalized, as many different uses of metadata could be applied.
In our research so far, we have investigated just one of them (i.e.
improve information seeking for blind people in the WWW).

Based on the annotation mechanism using metadata combined
with the vocabulary, the browser provides to the blind users with
a set of browsing shortcuts to the previously annotated elements.
This mechanism according to the findings of our preliminary
experimental tests with a set of blind users using our voice web
browser could be quite useful for them [22].

Annotators

End Users

Ontology
Creators

Annotations

Vocabulary

F
e
e
d
b
a
c
k

Framework Community

Figure 2 : Framework community diagram

The feedback provided by end-users apart from the SeEBrowser
development group was also useful for the annotators’ group,
because it suggested changes in annotations, better descriptions
for the annotations etc. Annotators are one of the groups in the
community model suggested by the application framework (see
Figure 2).
Their role is to annotate web pages for blind users. People in this
group can be either related to web authoring process such as web
developers, designers etc. or related to the blind users group such
as teachers in special schools for blind people. All of them
together could contribute with their annotations to web pages and
create an extensible layer of annotations over the existing web.

ONAR

Annotation tool
SeEBrowser

Annotators

Ontology
creators

End usersAgent
developers

Ontologies:
OWL

Web Pages:
WWW

Annotations:
RDF

Figure 3 : Framework data flow chart

During the annotation process annotators realize shortcomings in
the vocabulary they are using and suggest changes in it. The
group taking this feedback is the vocabulary developers and they
are responsible for developing vocabularies according to users
and annotators needs. This group of people can consist of

knowledge professionals, annotators, and generally people related
to knowledge engineering. The process and the connections
described in the previous paragraphs are shown in Figure 3 which
shows the data flow for the specific instantiation of the framework
in our project.

3 OWL ONTOLOGY
One of the key points in our application framework is the
vocabulary used for producing the annotations. The vocabulary is
described as a set of entities, properties and relationships between
ontologies in an OWL file. OWL is a language used for declaring
and describing ontologies. The ontologies can depict information
systems using classes, properties and relations between classes.
Our information system which is modelled is the WWW and the
web pages that exist in it together with their key visual and other
elements that are often used by sighted users. A menu for example
can be a class that describes the entity of a menu in a web page
and could have a property named “number of items”. In the
following section we will demonstrate how the concepts described
as classes in one ontology are instantiated in web pages.
In the specific instantiation of the proposed application
framework we have developed, an ontology editor called ONAR
[27]. ONAR provides a GUI where the knowledge engineer-
vocabulary creator can easily create classes, relations and assign
properties. All of them are presented in a graphical way as seen in
Figure 4. The main advantage of ONAR is that allows users who
don’t know the OWL language to create ontologies easily. In

addition, it is easier to understand an ontology developed by
another person when you see it in a diagram, such as this shown
in Figure 4, than in an OWL file. This encourages the
collaboration amongst vocabulary developers having as a
common goal the production of a final ontological vocabulary.
ONAR in its initial form was designed to process ontologies
locally on a user’s computer. This would mean an additional cost
of workload and communication between users when needed to
update or review an ontology developed by someone else.
Needless to say that there would be also synchronization
problems if someone was developing an ontology in parallel with
someone else. To avoid all this confusion we enhanced ONAR
with an additional feature of downloading and uploading
ontologies in the web using a web service. Every user has a
username and uses this in order to upload his or her ontologies. In
addition he can assign a group of users that can update the current
ontology. With this scheme the network of vocabulary creators
can either develop an ontology on their own or cooperate with
other users in the development. However, when using the
ontologies for the annotation process there was the need to have a
certain user whose ontologies would be the result of all the
suggestions and discussions in the development process. To
achieve this we created a specific user with name * whose
ontologies are final products from the various collaborations and
suggestions. This doesn’t exclude ontologies developed by
various users or groups to be used too but ontologies by user * are
more official than any other.

Figure 4 : Screenshot of ONAR representing an ontology graph

3.1 OWL
The vocabulary issue is in general a knowledge representation
issue. The choice of OWL in our framework was based first of all
on the fact that it is a standard which is used widely in the
Semantic Web society. This makes it easier for anyone who wants
to contribute in the development of a vocabulary to do so having a
common language for communication. In addition ontologies in
OWL can serve many different purposes and apart from the
ontologies developed for our purpose, anyone could develop a
similar ontology for other purposes such as improving
accessibility of elderly or people with dyslexia. So, the use of
OWL allows extensibility of our framework.
In addition, OWL leaves the knowledge engineer free to construct
many kinds of relationships apart from the standard types of
relationships. This freedom though, comes with the cost of
producing an ontology that might be perceived differently by
different annotators. These problems of misinterpretation weren’t
strong enough to prevent us from using this freedom to create our
kind of relationships. For example, in our ontology there is a class
called “menu” and another one called “menu item”. These two are
connected with a relationship named “menu contains”. Similar
relationship are the “form contains” and the “result list contains”.
Using “contains” as a part of the relationship’s name is a naming
convention in our relationships. This way, we could create several
different relationships that all have the same meaning and can be
used in a certain way by the agent. In our browser for example
when the user reaches an annotated web page and listens to the
annotated elements found there, elements that are contained
within other container type elements are excluded from this initial
list. When later the user reaches a container element he can listen
the annotated elements found within this container element.
The vocabulary we developed in our SeeBrowser project aims in
describing elements in a web page that help blind users to move
faster and more efficient within a page and also across pages
especially of a certain site. Yesilada et. al. [28] have already
presented such a set of elements on web pages. In our vocabulary
there is a set of classes with the appropriate properties and
relationships that describe many of these elements. This means
that we have classes that describe various way points such as
menus, headings, sections, banners, advertisements, links to
specific places (i.e. site map page, home page, index page) etc. In
addition there are classes that describe elements that are widely
used in reference pages when searching for information such as
subject list, alphabetic list of items, short descriptions of items,
elaborate descriptions of items, navigation links within multiple
result pages such next, previous, first and last page etc. Another
part which is under development describes specific elements
widely used in portal sites such us, search box, web directory,
login form, weather box, news section, etc. Finally we plan to
develop the vocabulary with even more classes especially for
educational sites.

4 ANNOTATIONS
Annotations are the second key element of our framework. They
are produced in the form of RDF/XML files by an annotation tool.
Annotations are stored on an annotation storage server (see Figure
1). In this section we will discuss issues related to the structure of
annotation files, architecture of the annotation storage server, and
the role of annotators. Annotators play the role of the middleware
group between vocabulary creators and end-users and user agent

developers. They are also closer to end users and therefore they
have a very important and crucial role in our framework.

4.1 Structure of annotation files
Before explaining the structure of the annotation files we should
make a brief introduction to RDF. RDF is based on statements
that are formed in triples (Subject, predicate, object). Having this
in mind, we can say that a subject is a resource a predicate is a
property name for this resource and the object can be either
another resource or a literal as a value of the property. This means
that an object of a statement can be a subject in another statement
so that we can have a series of statements in a chain. A usual
presentation of an RDF file is a directed graph where resources
are presented with ellipses, predicates with arrows and literals
with rectangles. A typical graph can be seen in Figure 5.

Figure 5 : RDF Graph of an annotation file

For the particular application we investigated as a case study of
our application framework (i.e. develop a voice web browser for
blind people), we use an xml namespace called “SeESyntax” that
includes the schema according to which our files are produced.
The second namespace called “SeEBrowser” points to a
vocabulary for describing a web page which is an OWL file as
seen in the previous section. Having defined these two
namespaces, the typical structure of an annotation file in our
application is as follows:
<rdf:RDF xmlns:rdf="[RDF namespace]"
xmlns:SeESyntax="[SeESyntax namespace URL]"
xmlns:SeEBrowser="[SeEBrowser namespace URL]"
xml:base="[URL of annotated page]">
<SeESyntax:Annotation rdf:about="[URL of
annotated page]">
 <SeESyntax:Template>False</SeESyntax:Template>
 <SeESyntax:Contains>
 <SeEBrowser:[OWL Class] rdf:about="[URL +
XPATH of the annotated DOM element]">
 <SeEBrowser:[OWL Class property]>[value]
 </SeEBrowser: [OWL Class property]>
 <SeEBrowser:[OWL Class property]>[value]
 </SeEBrowser: [OWL Class property]>
 . . .
 </SeEBrowser:[OWL Class]>
 </SeESyntax:Contains>
 <SeESyntax:Contains>
 . . .
 </SeESyntax:Contains>
. . .
</SeESyntax:Annotation>
</rdf:RDF>
A file structured like this can describe various elements of a web
page using the XPATH of the HTML element one wants to

annotate. For example, an annotator assigns the concept of a menu
in a certain TABLE element on a web page and similarly assigns
values to its properties defined in the OWL file. In a similar way
another part within a DIV element in an HTML file, can
instantiate the concept of “main content” and so on. This is done
using the “SeESyntax:Contains” nodes.
The node “SeESyntax:Template” is a property of the
SeESyntax:Annotation class and is used in order to declare
whether the URL of the annotated page is a template for other
URL’s too or not. This is done in order to reduce the workload
and size of annotations produced when a certain page is similar to
others. Pages within a site are quite common to follow a certain
layout as a template for their design. When annotating one of
them we can use the Template property and in combination with a
regular expression instead of the actual URL we describe not just
one but a set of web pages described by this expression. This
mechanism provides a way of semi-automatic annotation of web
pages, which is crucial when annotating a large amount of pages.
As already discussed, annotations could be produced by many
different annotators using different vocabularies. The capability of
using different vocabularies is addressed in our framework by the
capability of defining different vocabularies. This is done by the
xml namespace declaration where every annotator can choose and
use any preferred vocabulary.

Figure 6 : A sample of an annotation file

This scheme however is problematic when annotations from
different annotators will be uploaded to the server. Annotations
are stored all together using a specific API that manages them
using an RDBMS. This means that statements of various users
about the same resource might create conflicts. To avoid this
confusion we use a mechanism provided by RDF and is called
reification. Reification is used when someone wants to make a
statement about a statement. This is done by using a certain set of
classes and attributes that convert a statement to a resource itself
so it can be used as subject in other statements. To achieve this we
use the abbreviated syntax for reification. This means that we
assign an rdf:ID property to each statement’s predicate and later
using this rdf:ID we can assert the reification statements.
Consequently, the structure of the file changes to what is shown in
Figure 6. This way not only the problem is solved using RDF
mechanisms, but there is also the possibility to use annotations
synthetically by many users.

4.2 The annotation tool
Annotation files are produced using specially designed software.
Figure 7 illustrates the user interface of the annotation program
that is separated into three main areas. The main area in the center
presents to the annotator the web page to be annotated. On the left
hand side a tree view represents the DOM tree of the web page.
When the annotator selects an element from the DOM tree the
corresponding area of the element is highlighted in the page view.
On the other side there is a list of the OWL classes available in
the vocabulary. When a user right-click on an element from the
DOM tree, this list appears in a popup menu and the annotator can
select the concept that s/he wants to assign to the element. After
the selection, a series of dialog boxes appear asking the user to
input values to the properties of the class. Repeating these steps
annotators produce the annotation file for a web page. Before
saving or uploading the file to the storage server the tool asks
them to input their username so that the reification statements can
be produced. Finally it also asks them whether the page they
annotated is a template for other pages or not. If yes then the user
has to input the regular expression that will describe the set
URL’s for the annotated pages.

4.3 Storage Server
The storage server is based on the idea of Annotea project [1] and
exploits some of its advantages. First of all the RDF annotations
are stored on a relational database using mySQL as RDBMS. The
Jena API [13] is used for managing the database. Jena API
provides the developer with the ability to work with an RDBMS
as an RDF database using RDQL commands instead of SQL.
RDQL is a language similar to SQL but especially developed for
selecting and presenting RDF graphs stored in RDF databases.
One of the advantages of the Annotea project is that the
communication and management of annotations in a server can be
done through simple HTTP POST and GET commands. We also
used a similar protocol for our communication with the annotation
server.
In particular a user requests the annotations for a URL with an
HTTP POST command. If there are many annotators that
uploaded annotations for the specific URL, then the response is a
list of them and there must be a second HTTP POST command
accompanied by an annotator’s name in order to get the
annotations from a specific annotator. Otherwise the annotations
are sent directly as a response to the first POST command. When
the server searches for a URL matching the requested it also
checks if the requested URL matches with regular expressions
existing in template descriptions.
The upload process is also similar. The server keeps a table of
annotators that can upload annotation to the server and when a
user uploads a file the username and the password kept in the
server must be also sent through an HTTP GET command to be
checked in the server. This requires annotators to be inserted in
the annotator's table beforehand by the annotation storage server
administrator. This is done for authorization purposes so that there
is a control on who uploads annotations.
For the purpose of our project we set up a specific storage sever
that we are using. The architecture though of this scheme is
extensible so that we could also have a network of storage servers.
This means that this network could become a second semantic
layer upon the current web. Agent developers can then take
advantage of this layer and use their metadata in any way they
like.

Figure 7 : Screenshot of the annotation tool

4.4 The role of an annotator
The authorization process is required because it is essential to
control the annotations uploaded in the server. We need to know
if an annotator produces invalid or misguiding annotations and
isolate or delete them. End users depend on good annotations, so
annotators need to have certain level of commitment and
reliability.
The latter shows that this group is very important in the
framework. An annotator should have some primitive knowledge
of HTML in order to understand the DOM tree structure and use it
correctly. The other important part of the annotation process is the
vocabulary. Names of the classes, their description, role and
relationships should be well understood before the annotation
process begins. Misinterpretation of concepts in the vocabulary
could lead to false or incomplete annotations. Finally annotators
should have a clear and complete overview of the web pages that
annotate in order to know their structure, layout and navigational
aids that they provide.
Another very important aspect of the annotation process is the
purpose of the annotation. The annotator should know where and
how these annotations would be used in order to achieve a better
description of the page. Knowing the needs of end users the
annotations may respond better to their needs. It is similar to the
situation when one must describe a building to an architect and
also to a friend without particular knowledge of the subject. First
of all, the vocabulary in the first case should be more technical
and specific where in the other case simpler. In addition the
architect will need more details in the description such as exact
sizes and places where the other person will be satisfied even with
a general description of the building.

In an analogous way, annotators in our example should know
what problems a blind user faces when browsing in the WWW, in
order to provide usable solutions through the annotations.
Consequently, interaction between these two groups is necessary.
Certainly the closer an annotator is to the end users group, it is
more likely he can produce a more effective annotation.
Annotators also provide feedback to vocabulary developers in
order to transfer to them needs of blind users that are not satisfied
by the current vocabulary or possible misinterpretations of the
concepts defined in a vocabulary.
To sum up, annotators as an intermediate group, between
vocabulary developers and end-users take feedback from end-
users and provide feedback to vocabulary developers regarding
the expressiveness, correctness and appropriateness of the
vocabulary. Sometimes it is even better if an annotator plays also
the role of vocabulary creator because he can solve annotation
problems related to vocabulary. There is also the possibility for
end-users to be annotators. However, in our case blind users that
want to annotate pages need to have an even better understanding
of HTML and they also need to have a sufficient browsing
experience with the pages to annotate.

5 SEEBROWSER
SeEBrowser is the final part of the framework and is the tool that
utilizes the result of all other tools and groups of people for end-
users benefit. It should be clear-cut that in our framework the two
other components that have been already discussed, i.e. the
ONAR ontology editor and the annotation tool can be used in any
condition and for developing any type of Semantic-Web
application. In this section we will shortly describe the basic

functions of SeEBrowser and we will discuss the findings from a
preliminary usability test.

5.1 Basic features of SeEBrowser
 SeEBrowser uses SAPI5 compatible TTS engines and voices.
Especially for the Greek language it uses the “Demosthenes” TTS
engine [30]. Using SAPI5 compatible voices means that users
should be able to change their preferred voice. This is done using
a voice profile control panel where users can configure the
preferred voices and other configurable aspects of speech (e.g.
adjusting voice rate).
Similar to other web browsers, SeEBrowser users can insert a
URL to browse, follow a link within a page, go back and forth in
visited pages and go to the home page. There is also a search text
feature allowing users to move directly to instances of a specific
text within a page. Finally there is a bookmarks feature that
allows users to save favourite URL addresses in a list. This
feature however has been adapted slightly to blind users’ needs.
Apart from the URL and the title it can also store the current
position of the reading cursor. This is later used to transfer the
user directly to the specific position when opening the page from
the bookmarks list.

5.2 Browsing within a web page
How the reading cursor moves, depends on how the user browses
within a page. Users listen to the web page fragmented depending
on the combination of which browsing and speaking mode is
selected. Based on these two modes a web page is decomposed in
two levels in order to be separated into the fragments to be
browsed.
The first level is the browsing mode selected. The browsing mode
defines whether the user will browse either the whole text of a
web page or parts of it (e.g. links only). In particular the user can
select either to browse the whole page or its links, headings or
forms. In each of the later cases a list of the HTML elements to be
browsed is formed. It is also important to say that when returning
from a specific collection of elements to browsing the whole
page, the “cursor” automatically moves to the corresponding
place next to the last element browsed by the previous mode.
The second level is the speaking mode selected. Here the text of
each element is further separated either in paragraphs, sentences
or words. This way the user pressing the Up and Down arrow
keys can listen the selected fragment word by word, sentence by
sentence or paragraph by paragraph. The combination of
browsing and speaking modes provides the user with a variety of
possible ways to browse a page according to his/her needs.

5.3 The use of annotations
As already pointed out a distinctive feature of SeEBrowser is the
use of the annotations produced by the process described in the
previous sections. There can be various uses of annotations but
the one implemented in SeEBrowser in this phase of the research
aims in improving browsing as an information seeking strategy.
This means that we aim in improving both browsing across pages
and within a page in order to make the information seeking
process more efficient and effective. The feature provided by our
browser for this purpose is the shortcuts to the annotated
elements.
This feature aims basically in improving the browsing within a
web page by simulating the layout scanning process of a sighted
user. When a user browses an annotated web page he can listen to

an overview of the page based on the annotated elements that
exist in it, by pressing Alt+I. Then using the Alt+Up or Down
arrows can move to each of them and start browsing its content.
When for example he visits the page show in Figure 7 he listens
that there are a main content area, a search box, a login form and
various other elements. Then by pressing Alt+Down arrow he can
move to the element he wants. If for example he wants to reach
the main content area he has to browse through the elements and
move to it. Once he hears the message “You are now in the main
content area” he can navigate and listen to it using the up and
down arrows. This reduces the time needed to reach the specific
point if he was using the simple navigation within the page. In
this case he should have “travelled” through every single bit of
peripheral uninteresting information in the page and then reach
the main content area. This way the overview presented in the
beginning offers a set of choices of starting points to reading the
content of a page similarly to what a sighted user does when
visiting a web page.
SeEBrowser using browsing shortcuts provides also faster
navigation through various elements of a page. Consider for
example an end-user who starts reading the main content and
judges it as not relevant; s/he might need to move directly and use
a navigational aid such as a menu in the page. Using
SeEBrowser’s browsing shortcuts feature s/he can move to the
desired element faster by simply navigating the annotated
elements list. Without this feature the end-user would have used
the simple navigation within the text in order to find a specific
point, possibly a phrase that would signal the existence of a menu.
Many blind users memorize distances in paragraphs or links for
these elements in order to find them later using the start of the
page as a landmark. Both ways are more time and effort
consuming than SeEBrowser’s browsing shortcuts utility.
The mechanism hidden behind this feature is the annotations and
their properties. Every class in the ontology has two standard
properties. The first, named “ID”, identifies uniquely each
annotated element from any other in the page. The second named
“Description” contains a short description about the annotated
element and is heard when the user reaches the specific element.
Furthermore, the groups of relationships presented in the OWL
Ontology section allow some special management for some of the
annotated elements. In particular the “contains” group of
relationships indicates to the browser the existence of a hierarchy
of classes. In our case, when a user listens to annotated elements
found in a page, some of the annotated elements are excluded
from the initial list. These are the elements that are contained
within other container elements (e.g. items within a navigational
menu). Users can find and hear a list of them only if they reach
the corresponding container element. For example the blind user
hears that there is a menu in the web page, but only after reaching
the menu element and pressing Alt+I again s/he listens that there
are 7 menu items within the certain menu element. This allows the
annotator to create a quite detailed description of a web page with
a controlled level of granularity. It allows also blind users not to
be overloaded by hearing elements that are not useful at a specific
browsing moment. These elements will be hidden until discovered
by the blind user while browsing within the page.
In the current phase of the research the first aim of the vocabulary
and the annotations in pages is to improve browsing within a
page. However, this improvement of browsing within a page
sometimes leads to improvement of across document browsing.
For example, pointing to a menu and describing the destination

web page of menu items, makes browsing within a site quite
easier. In addition, when examining a search engine's result list
the annotations of links to next, previous, first and last page
improves a lot the browsing in it. The main benefit from these
annotations is that they provide a quicker way of reaching
important parts of a web page instead of having to listen to useless
information to reach it.

5.4 Preliminary evaluation and experts
testing

SeEBrowser was tested by blind users in an experiment presented
in [22]. The usability evaluation indicated that the browser was
found quite usable, easy to learn and especially the shortcuts
feature rated as very helpful by all users.
Further examination of the log files led to some more findings. As
seen in Figure 8 the percentage of keystrokes used when using
annotations shows that most of the keystrokes are for movement
within pages. Excluding these keystrokes (Up and Down arrows)
we can have an analysis on the rest of the keystrokes. For the case
of using the annotation that we see in Figure 9 we can say that
most of the movement across pages are done by following links
within pages and rarely going back to already visited pages. This
might be come as a result of the structure of the experimental site
which was quite simple. The use though, of annotation related
keystrokes, shows that they were used almost in every page
visited since the Alt+I and Alt+Down percentages are similar to
those of EnterLink.
Another analysis on the speaking and browsing modes showed
that most users had selected the combination of the whole page as
browsing mode and paragraphs as speaking mode. There are very
few cases of use of links browsing mode and sentences speaking
mode. This could be caused by either the fact that the users
weren’t too experienced with the application or because of the
site’s construction that encouraged this combination. It is also
important to say that at the time of the experiment the browsing
modes for headings and forms were not implemented.
After further development of the application, we gave the tool for
experimental use to a number of experienced blind users that
would provide feedback through interviews. They were asked to
use the tool both in a not annotated site and in an encyclopaedia
site annotated for the next experiment. Summing up the feedback
from the interviews there are some very important conclusions.

Percentages of moves using annotations

0,00%

10,00%
20,00%
30,00%
40,00%

50,00%
60,00%

70,00%
80,00%

90,00%

GoHome

GoBac
k Up

Down

Enter
Link

Alt+
I

Alt+
Up

Alt+
Down

Moves

Pe
rc

en
ta

ge
s

User 1

User 2

User 3

User 4

User 5

User 6

Figure 8 : Percentages of moves when using annotations

Percentages of moves using annotations

0,00%

10,00%
20,00%
30,00%
40,00%

50,00%
60,00%

70,00%
80,00%

90,00%

GoHome

GoBac
k Up

Down

Enter
Link

Alt+
I

Alt+
Up

Alt+
Down

Moves

Pe
rc

en
ta

ge
s

User 1

User 2

User 3

User 4

User 5

User 6

Figure 9 : Average percentage of moves when using

annotations

First of all, the modification in the bookmarks feature was
welcomed and judged as very helpful. There was also a
suggestion to implement the “history browsing” (going back and
for in pages already visited) in a similar way. This means that
when they move back to the previous page visited they are also
transferred directly to the place (paragraph, sentence or word)
they followed the link from.
Second the use of annotations in a more realistic environment
such as the encyclopaedia was found much more helpful than in
the first experiments environment. The use of relationships and
annotated elements within other using the “contains” group of
relationships was also rated positively.
A disadvantage of SeEBrowser was the lack of particular
handling for tables containing tabular data. In our solution a table
is read row by row and each cell in a row is presented as a
paragraph. This leads to disorientation when navigating large
tables. Currently, our solution deals with tables when used for
layout because they can be annotated and convey their visual
information to blind users too. The solution provided for tables
containing tabular data was thought to be sufficient but the
feedback we got is now suggesting that it’s not. This problem has
been investigated by Filepp et. al. [4] and Yesilada et. al. [28] and
there are already solutions suggested and could be adapted to our
application. Information seeking often has to do with reading
tables so this is a crucial part that needs improvement on our
browser and it is rated as high priority in our further development.
Finally there was a suggestion for a notepad like feature. In
particular they requested a mechanism that would help them in
gathering information while seeking. The idea is that when the
user finds an interesting part in a page he could mark it and move
it directly to a notepad. After gathering an amount of information
there, he could save it in a separate text file and further process it
later.

6 FURTHER RESEARCH
6.1 Domain specific vocabularies
The next stages of our research include development of domain
specific vocabularies and annotation of pages using them in order
to improve even more the across document browsing. This can be
done by using these annotations for providing functions similar to
the scanning function of sighted user which is one of the basic
functions in information seeking.

6.2 Automatic annotations
Our application framework depends heavily on the annotations
produced by annotators. These annotations up to now are
produced mainly by users that contribute them to our framework.
It is easily understood that the large amount of information
existing in the web and its daily update makes this job quite
difficult even for a large network of human annotators.
To deal with this problem there are already thoughts and research
in the field of automatic and semi-automatic annotation. The field
can be separated in web content and web structure mining. In the
field of web content mining there is already research from Huang
& Sundaresan [12] and Mukherjee et. al. [17]. In the part of web
structure mining there are interesting approaches by Pontelli &
Son [19] and Kottapally et. al. [14]. We are currently
investigating solutions in structure mining since it seems that in
web page design there are specific patterns that are repeated
numerously. One of them, that is widely used, is the desktop
metaphor. If there can be a set of rules that could find patterns that
usually present elements described in our vocabulary then the
annotation could be done almost automatically. There will still be
human interference in the annotation process to confirm the
suggested annotations or correct them but a great load of work
would be done automatically.
Up to now none of the suggested solutions for automatic web
content or web structure mining is 100% successful to all pages
and there are doubts if there will ever be such a solution. There
are however, a number of solutions that present quite important
percentages of success in specific domain web pages such as in
[7] and [30]. This is a good indication that there can be solutions
in other domains too.

6.3 Other uses of annotations
Another area of research to be followed is other possible uses of
annotations apart the shortcuts functionality. An approach to this
could be the formation of profiles that would reconstruct a web
page according user needs. These profiles could either be
constructed by users themselves, by annotators or even better by
machines through semantic web usage mining.
The latter one is a field of research that is now starting to be
exploited. For our project there is already a logging function
enhanced in the browser that captures movement of users within
and across document. These log files could provide valuable
information especially for annotated web pages. They could
provide users with navigational guidance based on previous visits
and browsing in pages. A similar approach in web usage mining is
presented by Spiliopoulou [24]. In our research similar techniques
could be used on log files from navigation within annotated
pages. In general the layer of annotations created by annotators
could provide valuable feedback when used by blind users.

6.4 Discussion
Summing up, the paper presented a framework that is based on
the Semantic Web idea and may contribute to improving
accessibility in the WWW. The framework utilizes various
existing standards of Semantic Web such as OWL and RDF. But
also it goes beyond the simple utilization of standards, by
suggesting an architecture and an application framework that
could be generalized to virtually any (Semantic Web) application.
We have presented a particular implementation of the framework
that uses an ontology editor and a graphical annotation tool. These
two components can be used in any condition and for developing

any type of Semantic-Web application. As an example of such
application we have presented a specialized voice web browser
called SeEBrowser which particularly aims to make browsing
blind users more efficient using browsing shortcuts.
However, the most important idea of the proposed framework is
that it promotes and encourages the creation of a community that
will work together having as their goal the improvement of
accessibility. The framework also provides all the necessary tools
to facilitate collaboration. This community consists of groups of
people each having a specific role in it. Anyone willing to help
can contribute from his or her own part, as an ontology creator,
annotator, application developer or even end user. The power of
this community is its independency and freedom from the current
web authoring community. Our community is not tightly
connected to the web authoring society, which is quite large and
difficult to educate in accessibility issues. However, it can work
independently upon the products of the web authoring society.

7 ACKNOWLEDGEMENTS
The research project is funded by the E.U. and the Greek Ministry
of Education under the research program “Archimedes”[23]. We
would also like to thank Dimitris Tektonidis for his contribution
to the project with the development of ONAR and Marios
Chatzidimitriou for the development of the annotation storage
server software.

8 REFERENCES
[1] Annotea project http://www.w3.org/2001/Annotea/
[2] Asakawa, C. "What's the web like if you can't see it?", In:

W4A '05: Proceedings of the 2005 International Cross-
Disciplinary Workshop on Web Accessibility (W4A), 2005,
1-8

[3] Asakawa, C. and Takagi, H. "Annotation-based transcoding
for nonvisual web access", In: Proceedings of the fourth
international ACM conference on Assistive technologies,
2000, 172-179

[4] Coy, J. "A commercial perspective on universal access and
assistive technology: towards implementation", Universal
Access in the Information Society, 2(3), 2003, 207-214.

[5] Filepp, R., Challenger, J. and Rosu, D. "Improving the
accessibility of aurally rendered HTML tables", In:
Proceedings of the fifth international ACM conference on
Assistive technologies, 2002, 9-16

[6] Goble, C., Harper, S. and Stevens, R. "The travails of
visually impaired web travelers", In: Proceedings of the
eleventh ACM on Hypertext and hypermedia, 2000, 1-10

[7] Gupta, S. and Kaiser, G. "Extracting content from accessible
web pages", In: W4A '05: Proceedings of the 2005
International Cross-Disciplinary Workshop on Web
Accessibility (W4A), 2005, 26-30

[8] Hanson V.L., R. J. "Achieving a more usable WorldWide
Web", Behaviour and Information Technology, 24 (3),
2005, 231-246.

[9] Harper, S. Web Mobility for Visually Impaired Surfers. PhD
thesis, The University of Manchester, 2001.

[10] Harper, S., Goble, C. and Stevens, R. "A pilot study to
examine the mobility problems of visually impaired users
travelling the web", SIGCAPH Comput. Phys. Handicap.,
(68), 2000, 10-19.

[11] Huang, A. W. and Sundaresan, N. "A semantic transcoding
system to adapt Web services for users with disabilities", In:
Proceedings of the fourth international ACM conference on
Assistive technologies, 2000, 156-163

[12] Huang, A. and Sundaresan, N. "Aurora: a conceptual model
for Web-content adaptation to support the universal usability
of Web-based services", In: Proceedings on the 2000
conference on Universal Usability, 2000, 124-131

[13] Jena Semantic Web Framework http://jena.sourceforge.net/
[14] Kottapally, K., Ngo, C., Reddy, R., Pontelli, E., Son, T. C.

and Gillan, D. "Towards the creation of accessibility agents
for non-visual navigation of the web", In: Proceedings of the
2003 conference on Universal usability, 2003, 134-141

[15] Mantratzis, C., Orgun, M. and Cassidy, S. "Separating
XHTML content from navigation clutter using DOM-
structure block analysis", In: HYPERTEXT '05: Proceedings
of the sixteenth ACM conference on Hypertext and
hypermedia, 2005, 145-147

[16] Marshall, C. C. and Shipman, F. M. "Which semantic web?",
In: HYPERTEXT '03: Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, 2003, 57-66

[17] Mukherjee, S., Ramakrishnan, I. and Kifer, M. "Semantic
bookmarking for non-visual web access", In: Proceedings of
the ACM SIGACCESS conference on Computers and
accessibility, 2004, 185-192

[18] Pontelli, Son, Kottapally, Ngo, Reddy and Gillan "A system
for automatic structure discovery and reasoning-based
navigation of the web", Interacting with Computers, 16 (3),
2004, 451-475.

[19] Pontelli, E. and Son, T. "Planning, reasoning, and agents for
non-visual navigation of tables and frames", In: Proceedings
of the fifth international ACM conference on Assistive
technologies, 2002, 73-80

[20] Ramakrishnan, I., Stent, A. and Yang, G. "Hearsay: enabling
audio browsing on hypertext content", In: Proceedings of the
13th international conference on World Wide Web, 2004,
80-89

[21] Richards, J. and Hanson, V. "Web accessibility: a broader
view", In: Proceedings of the 13th international conference
on World Wide Web, 2004, 72-79

[22] Salampasis, M., Kouroupetroglou, C. and Manitsaris, A.
"Semantically enhanced browsing for blind people in the
WWW", In: HYPERTEXT '05: Proceedings of the sixteenth
ACM conference on Hypertext and hypermedia, 2005, 32-34

[23] SeEBrowser Project (Archimedes)
http://erodios.it.teithe.gr/archimedes/English/Index.htm

[24] Spiliopoulou, M. "Web usage mining for Web site
evaluation", Commun. ACM, 43 (8), 2000, 127-134.

[25] Takagi, H. and Asakawa, C. "Transcoding proxy for non
visual web access", In: Proceedings of the fourth
international ACM conference on Assistive technologies.
2000, 164-171

[26] Takagi, H., Asakawa, C., Fukuda, K. and Maeda, J. "Site-
wide annotation: reconstructing existing pages to be
accessible", In: Proceedings of the fifth international ACM
conference on Assistive technologies, 2002, 81-88

[27] Tektonidis D., Bokma. A., Oatley G., Salampasis M.
"ONAR: An ontologies-based service oriented application
integration framework", In: 1st International Conference on
Interoperability of Enterprise Software and Applications,
Geneva, Switzerland, 2005

[28] Yesilada, Y., Stevens, R. and Goble, C. "A Foundation for
Tool Based Mobility Support for Visually Impaired Web
Users." Paper presented at the Proceedings of the twelfth
international conference on World Wide Web 2003.

[29] Yesilada, Y., Stevens, R., Goble, C. and Hussein, S.
"Rendering tables in audio: the interaction of structure and
reading styles", In: Proceedings of the ACM SIGACCESS
conference on Computers and accessibility, 2004, 16-23

[30] Xydas G., K. G. "The DEMOSTHeNES Speech Composer",
In: 4th ISCA Tutorial and Workshop on Speech Synthesis
(SSW4), Perthshire, Scotland ,2001, 167-172

	ABSTRACT
	INTRODUCTION
	A SEMANTIC WEB APPLICATION FRAMEWORK
	OWL ONTOLOGY
	OWL

	ANNOTATIONS
	Structure of annotation files
	The annotation tool
	Storage Server
	The role of an annotator

	SEEBROWSER
	Basic features of SeEBrowser
	Browsing within a web page
	The use of annotations
	Preliminary evaluation and experts testing

	FURTHER RESEARCH
	Domain specific vocabularies
	Automatic annotations
	Other uses of annotations
	Discussion

	ACKNOWLEDGEMENTS
	REFERENCES

