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ABSTRACT

This paper addresses the problem of detecting blog spams,
which are unsolicited messages on blog sites, among blog en-
tries. Unlike a spam mail, a typical blog spam is produced
to increase the PageRank for the spammer’s Web sites, and
so many copies of the blog spam are necessary and all of
them contain URLs of the sites. Therefore the number of
the copies, we call it the frequency, seems to be a good key to
find this type of blog spams. The frequency is not, however,
sufficient for detection algorithms which detect an entry as
a blog spam if the frequency is greater than some threshold
value, because of the following reasons: it is very difficult to
collect Web pages including all copies of a blog entry; there-
fore an input data contains only a few copies of the entry
whose number may be smaller than the predefined thresh-
old; and thus a frequency based spam detection algorithm
fails to detect. Instead of frequency based approaches, we
propose a spam detection method based on the wvocabulary
size, which is the number of substrings whose frequencies
are the same. The proposed method utilizes the fact that
the vocabulary size of substrings in normal blog entries fol-
lows the Zipf’s distribution but the vocabulary size in blog
spams does not. We show its effectiveness by experiments,
using both artificial data and Web data collected from ac-
tual blog entries. Experiments using Web data show that
the proposed method can detect a blog spam even if the fre-
quency of it is not so large, and that the method finds all
blog spams with some copies simultaneously in given blog
entries. A blog spam written in Chinese, which seems to be
advertisements for Chinese movies, is found from an English
blog site. This result shows that the proposed method is in-
dependent from the language. We also show the scalability
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of the proposed method with respect to input size using a
huge size of text data.
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1. INTRODUCTION

A blog is a frequently updated journal on a Web site.
A blog software, such as Movable Type, provides the ba-
sic function for blog users to write their journals easily:
they only write their journals, and do not need to know any
HTML tags to format and sort their journals. And a blog
software also provides communication functions among blog
users and readers, such as comments and track backs. By
the simplicity and the communication functions of the blog,
the number of blog sites are increasing rapidly. However,
these functions cause the problem of blog spams.

Blog spams are unsolicited bulk messages, also known as
comment spams, link spams, splogs, etc[6, 9]. Blog spams
usually contain URLs of spammers’ Web sites or blog sites,
and they intend to manipulate PageRanks and other similar
metrics of these sites for search engine optimization (SEO).

The existing methods to decrease effects of spams are cat-
egorized into three types:the regulation, the link structure
analysis, and the contents analysis.

Regulation: The no follow tag, which is a kind of regula-
tion, is introduced by search engine companies [5]. This tag
is used as follows: only the administrator or the owner of a
blog site can use the tag; links only above this tag are used



to calculate PageRanks or other similar metrics, while the
links below the tag are ignored; and therefore the effect of
blog spams is reduced. The no follow tag, however, is not
effective if it is not used widely. Even if it is used widely,
any links even in normal comments or track backs below this
tag are also ignored.

Link structure analysis: Link farms are dense clusters of
Web pages with mutual links to raise PageRanks each other.
Some methods to find them using the link structure analysis
are proposed [2, 3, 18]. It is, however, difficult to judge
automatically whether the mutual links are malicious links
or not.

Contents analysis: This type method, which is used for
spam mail detection, discovers differences in appearances
of letters or words between spams and non-spams [4, 7, 15,
17]. A mail filtering software learns classification rules using
training data [4, 7, 17]. It is costly to make training data. A
similar method is also developed for blog spams [15]. How-
ever, the main purpose of spams is to give many links to
spammers’ Web sites, and so contents of them are simple,
natural sentences, unlike spam mails. Therefore, it seems to
be difficult to find significant differences among blog spams
and others.

The goal of this paper is to develop a method detecting
blog spams. To achieve this goal, first consider what blog
spams are minutely. A blog entry is generally said to be a
spam if its purpose is the advertisement or to manipulate
the PageRank, or if its content is wicked. This definition is
vague and it is very difficult to detect such a vague target
automatically. Instead of purposes of blog entries or spam-
mers’ intentions, we pay attention to the cost of spammers.

Spammers must create many copies of an entry at low
cost to achieve their purposes. So when we want to detect
blog spams, the number of copies of a blog entry, that is, the
frequency of the entry, seems to be an important point. The
simple frequency of the entry, however, is not effective for
spam detection, because we cannot collect all blog entries on
the Web and so collected data may not have enough copies
of a blog spam to detect it as a spam. Thus, the frequency
based method may not work.

Therefore, threshold for frequency based approaches, such
as a spam mail detection algorithm in [19], is not applicable
perfectly to the spam detection. We need another measure
instead of the simple frequency.

In addition to the frequency of spams, we consider the
length of blog entries as an important key to detect blog
spams. Contents of blog spams must be long enough, be-
cause the purpose of the spams are an advertisement or SEO,
and they contain URLs of spammers’ sites. In other words,
only few words or phrases cannot deliver spammers’ mes-
sages.

In this paper, we propose a unique spam detection method
for spam detection based on the vocabulary size of all sub-
strings in blog entries. The vocabulary size is the number
of strings whose frequencies are the same' The basic idea of
the proposed method is the Zipf’s law, which states that the
vocabulary size is inversely proportional to the frequency
of strings in natural language sentences [20, 21]. In other
words, the Zipf’s law says that a size-frequency plot, which
is a plot of vocabulary sizes for each frequency in double-

!Generally the vocabulary size is defined by the words, but
note that our definition of the vocabulary size is not based
on words but substrings of blog entries.

logarithmic scale, is a straight line with negative slope. So,
the frequency of substrings in non-spams follows a Zipf’s
distribution, while that in blog spams does not, because the
existence of many copies of a spam increases the vocabulary
size abnormally.

Some of the authors developed similar method, called the
substring amplification, using the total occurrence instead
of the vocabulary size [10, 11]. It was developed to discover
common strings and templates in Web pages. The substring
amplification, however, has serious weak points when we
use this as a spam detection algorithm. First, we must see
the total occurrence-frequency plot and find the remarkable
spikes, which is constituted by common strings. The linear
time complexity of the substring amplification goes away
because of this operation. Second, a common string, such as
a template of Web pages, appears most of input strings, but
a spam may appear a few times in the input blog entries even
if many copies of the spam may exist on the Web. We do not
know that the substring amplification can detect such spams
with a few copies. Third, the substring amplification can
not distinguish spams with other high frequent words, which
includes non-templates or non-spams, though the spams are
also included in frequent words.

We suggest a conditional expression for the vocabulary
size, instead of the total occurrence, to develop an automatic
algorithm for spam detection. The vocabulary size decreases
monotonically as the frequency increases, although the to-
tal occurrence does not. Thus, it is natural to make the
conditional expression based on the vocabulary size. This
conditional expression is a key point for an automatic spam
detection algorithm.

In the spam detection problem, both the false-negative
and false-positive problems are so important. The proposed
method resolves the false-negative problem, while it is diffi-
cult to solve the false-positive problem by our method, be-
cause our method does not refer contents of detected strings.
The false-positive problem is also difficult for other spam de-
tection algorithms if these algorithms work automatically,
since (blog) spams are not defined clearly.

We conduct four experiments. First, we show the scala-
bility of the proposed method. Our implementation of it
is scale linearly, and so it can process about 1.5G bytes
text data in about 30 minutes. Next, we estimate the lower
bound of the length and the frequency of the detectable
spams experimentally using artificial data. As mentioned
above, the longer or more frequent spams are, the easier
their detection is. Next, we estimate the lower bound of the
number of copies of one message empirically. Obviously, it
is easy to detect many copies, but we do not know the lower
bound. In other words, these two experiments show that the
proposed method does not have the false-negative problem
if blog spams have some adequate length. Finally, we show
the applicability of our algorithm to real data on the Web.
The data, where we do not know that include spams or not,
is from the Internet blog site “Arianna’s Blog”. We found
several spams written in some languages.

2. SPAMDETECTION USING SUBSTRING
AMPLIFICATION

In this section, we first explain the substring amplification,
which finds the common string, according to [10, 11], and
then point out some serious problems we are faced with when
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Figure 1: Relation between the frequency f and
the total occurrence T'(f) for artificial data with 64
spams. The z-axis is the frequency in log scale, and
the y-axis is total occurrence. The remarkable spike
at f = 64 is constituted by long substrings of the
common string

applying this algorithm to the spam detection problem.

Let X be a finite alphabet, and let ¥* denote the free
monoid over ¥. An element of X% is called a string. A
sample is a finite subset S of X*.

Suppose that all the strings in a sample S contain a com-
mon string w of length n, and other parts of strings are
natural sentences. For simplicity, we now assume that w
appears only once in each string in S, and so the frequency
of wis |S| = f. In the spam detection problem, S is a set of
HTML pages, each string in S corresponds to a blog entry
with comments and track backs, and w is a blog spam in-
cluded in all entries. We can assume that w is not so short,
because it contain several sentences to lead readers to URLSs
of spammer’s Web /blog sites.

We count frequencies of the substrings of w in S. First,
the frequency of length n, which equals to the frequency
of w itself, is obviously f. Conversely, we cannot find other
string with frequency f, because f = |S] is irregularly high
frequency and other parts of strings in S are natural sen-
tences. Next, we count shorter substrings. The frequen-
cies of the substrings of length n — 1 are also f with high
probability, because we can hardly find other strings with
frequency f, which is irregularly large. The frequencies of
the substrings of length n — 2 are also f with high probabil-
ity because of the same reason. Similarly, while the length
of substrings of w is long enough, their frequencies are also
f with high probability. Hence, the number of substrings
whose frequencies are f is approximately O(n?). Therefore,
we can expect that the total occurrence, denoted by T'(f),
of substrings with frequency f is quite large.

To find common strings, the substring amplification finds
some fs providing irregularly large T'(f). Figure 1 shows a
relation between the frequency f and the total occurrence
T(f). We call such a graph a total occurrence-frequency plot.
We see the remarkable spike at f = 64 whose total occur-
rence is constituted by a common string and many of its
substrings. So, we can find the common string using T(f).

To get a total occurrence-frequency plot, we need to enu-
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Figure 2: Relation between the frequency f and
the total occurrence T'(f) for artificial data with 62
spams. The z-axis is the frequency in log scale(8 <
f < 5000), and the y-axis is total occurrence. The
remarkable spike at f = 62 is constituted by long
substrings of the common string, and the remark-
able spike at f = 1779 is constituted by non-common
strings

merate all substrings. Although there exist O(n2) substrings
for a string of length n, an excellent data structure, such as
the suffix tree [8], enables to count them in linear time.

Although the substring amplification is scalable and good
to find common strings in general, it has three serious prob-
lems when applying to the spam detection problem.

First, we must see a total occurrence-frequency plot and
find remarkable spikes manually. This problem is most se-
rious, because it takes long time and judgments are very
vague. In addition, manual judgments prone to misjudge
such that we judge a remarkable spike with a non-common
string as a common string. For example, in Figure 2 we can
find two spikes, one is the spike constituted by a common
string at f = 62, the other is the spike constituted by a
non-common string at f = 1779, because the substring am-
plification uses the total occurrence T'(f). Total occurrence
is large if strings are high frequency or a string is long. So
total occurrence is large if strings are high frequency but
a string is not long enough. Thus, we need an automatic
algorithm to detect spams and not to misjudge.

Second, we do not know whether the substring amplifi-
cation is applicable to the spam detection problem. The
substring amplification was originally developed to detect
common strings, such as templates in HTML text on the
Web [11]. The number of templates in input data is gen-
erally similar to that of the file in input data. In addition,
templates are long enough because they include long HTML
tag sequences, URLs, and so on. So templates are high fre-
quency and long enough. Spams, however, may not be long,
compared to Web templates, and may not be frequent in in-
put data. In other words, spams are hidden in huge amounts
of non-spams, so that we need to find a small amount of
spams from huge amounts of input data.

Third, in spam detection problem, there are the false-
positive and false-negative problems. In general, spams are
not defined exactly, so any spam detection methods needs
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Figure 3: Relation between the frequencies f and
the vocabulary sizes V(f) for the novel “kokoro” in
Japan. The z-axis is the frequency, and the y-axis
is the vocabulary size in log scale. The vocabulary
sizes are for the substrings frequencies

finally human judgment whether detected strings are spams
or not. For a false-positive problem, the substring ampli-
fication may be effective, because it may be able to detect
not only spams and templates but also non-spams and non-
templates.

3. SPAM DETECTION BASED ON ZIPF’S
LAW

In this section, we introduce a developed method which
detects spams. The developed method is based on the Zipf’s
law.

3.1 Zipf’s Law

Let V(f) be the number of strings whose frequencies are f
in a given sample S. We call V (f) a vocabulary size. It is also
known as the frequency of frequency in the natural language
processing. Using the vocabulary size, the total occurrence
is denoted by T'(f) = f x V(f).

Between f and V(f), the so-called Zipf’s law holds [20,
21]: the vocabulary size is inversely proportional to the fre-
quency of strings in natural language sentences. In other
words,

V(f) = bf *(a>0),
logV(f) = logb—alogf.

Therefore a size-frequency plot, which is a graph of the vo-
cabulary size for each frequency, is a straight line with neg-
ative slope(show Figure 3).

Readers note that the above law is known as Zipf’s second
law, and that it is a statement about English words, not
about (sub)strings. It is, however, shown empirically that
the vocabulary size for substring frequencies also follows a
Zipf distribution [10, 11].

Similar distributions are also found in words in other lan-
guages, links of WWW [1], product sales.

3.2 Conditional Expression

D(1,)
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Figure 4: Conditional expression D(f) is the differ-
ence between V,, on f,, and the median of V; and V»
which are on f around f,,

The substring amplification is based on the total occur-
rence, which equals the product of the frequency and the
number of the substrings. The total occurrence leads us to
a misjudgment such that a remarkable spike is constituted
by non-spams. A sample with spams has also the power-
law distribution of the number of the substrings. Spams
with enough length are more intended spams than spams
with high frequency. Thus, we introduce a spam detection
method with the vocabulary size for the substrings. In order
to find remarkable spikes automatically, we must analyze the
spikes numerically.

The remarkable spike is out of the natural distribution. In
other words, if there is a remarkable spike at the frequency f,
V(f) is much lager than both V/(f—1) and V(f+1). Hence,
if there is a remarkable spike at the frequency f, V(f) is
under the following rule:

V(=1 <V, V() >V(f+1).

We consider a remarkable spike itself. First, we estimate
the height V(f) of a remarkable spike from the number of
the substrings at f. Because the number of the substrings
of a string of length n is at most n(n+1)/2, we can estimate
the height as O(n?).

Second, we estimate the number of the substrings of V(f)
when there is no remarkable spike at the frequency f. We
consider that the distribution of the number of the sub-
strings is monotonically decreasing. V (f), the number of the
substrings at the frequency f, exists between V(f — 1) and
V(f +1). Thus, we assume that the original number of the
substrings V(f) at the frequency fis (V(f—1)+V(f+1))/2.

Let f., be a frequency f. Let f1 be a frequency f—1 and
f2 be a frequency f+ 1. Then, Vi, V,, and V5 is the value V'
on fi,fm and f2. Suppose that V,, makes a remarkable
spike, the difference on f, is the following:

Figure 4 is the visual graph of D(f). We consider D(f) as
a conditional expression. We find spams by the conditional
expression D(f) for the frequencies, when D(f) is large.

This conditional expression D(f) judges the remarkable
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Figure 5: The spam detection algorithm can make
non-spam data by the operation which the de-
tected strings, spams or templates, are removed
from dataset.

spike by the number of the substrings V'(f) instead of the
total occurrence T'(f). The substring amplification uses
the total occurrence, but in really this conditional expres-
sion D(f) can find the remarkable spike using only the num-
ber of the substrings. In the substring amplification, the
total occurrence is used because the spike is remarkable for
the human seeing, thus we do not need the total occurrence
essentially. This conditional expression can lead us to find
the remarkable spike, which the substring amplification did
not refer.

3.3 Algorithm

In preceding subsection, we showed conditional expression
which can detect frequent strings automatically. However,
we cannot detect several frequent strings, because the fre-
quency f which D(f) is the largest includes several kinds
of strings and the maximum of D(f) can detect only one
spam. So, we operate remove the detected strings in ad-
dition to the conditional expression. This operation enable
to detect several kinds of frequency strings, several kinds of
strings on the same frequency and templates.

We can differentiate templates from spams easily, thus
we can detect spam easily. Hence, this operation enable to
make the data set which has no spams. Figure 5 shows the
sensuous overview of the spam detection algorithm by this
operation. Consequently, we have an algorithm for the spam
detection problem (see Figure 6). Figure 5 is visual for this
algorithm.

Count (T) is a function which enumerates the number of
the substrings in sample S, where T' = wi1$wsz - - - wp, S =
{wi,wa,...,wp}, and $ is the special symbol not in 3 (see
Figure 7). Count(T) uses a suffix tree for 7'

Let v be a node in a suffix tree, u be its parent node, ¢ be
the number of leaves below v. The branching string for v is
the string obtained by concatenating all strings labeled on
edges of the path from the root to v. We denote by |v| the
length of the branching word v. With the suffix tree, all we
have to do is to count only branching strings.

However, a suffix tree requires a much working space.
Therefore Count() uses a suffix array instead and utilizes

function DiscoverString(var S: sample):sample
var
0CC: hash(key:integer, value:integer);
V: hash(key:integer,
value:list of tuples of integers);
begin
T:=wi$w2$...$w$; // S=wl, w2, ..., wn
(occ, V) :=Count(T);
for f in keys(V) do begin;
for w in V{f} do begin;
//w is denoted by (c, 1, h) of integers
if(lw-1l<lwl & |w|>|w+l]);
D(f) = |wl - C(lw-1]+]w+1])/2;
else;
D(£) = 0;
end;
end;
maxf = O;
maxD = 0;
for £ in (D(£)!=0) do begin;
if (maxD < D(£))

maxD = D(f);
maxf = f;
end;
return(V(maxf));
end;

Algorithm SpamDetectionAlgorithm(Var S:sample)
begin
while(spam 0O S) do begin;
string = DiscoverString(S);
remove(string,S,newS);
S = newsS;
end;
end;

Figure 6: Spam Detection Algorithm

the subroutine TraverseWithArray () [12] which computes
the postorder traversal of a suffix tree with a suffix array.

To compute V(f) for all frequencies, first Count () calcu-
late total occurrences T'(f) using (Jv] — |u|) X ¢ for all nodes
in a suffix tree. Count () outputs two hashes OCC and SEQ
each of whose key is a frequency f. H_f-H equals to T'(f),
so we have V(f) = 0CC(f).

The value of SEQ is a list of tuples (11, h1l, h2), which
are integers, to express substrings with the same frequency
in the given string. Count () uses two stacks node and freq
which consist of tuples (c, 1, h) of three integers. node is
used for the postorder traversal, and freq is used for count-
ing total occurrences T'(f). In the postorder traversal using
a suffix array SA, each node of a suffix tree is expressed by a
tuple (c, 1, h), where c means the number of leaves below
the node, 1 is the position in a suffix array for the branch-
ing string of the node, and h is the length of the branching
string. The substring of length h starting at SA[1] in a given
string is the branching string of the node.

For each node v in the postorder traversal, child in Fig-
ure 7 represents the number of children nodes of v at the
position loop(1). The top child tuples in freq are the
information about the all children nodes of v at loop(1).
Count () calculates T'(f) of the branching strings of the chil-



function Count(var T: string):
hash(key:integer, value:integer),
hash(key:integer,
value:1list of tuples of integers);
var
0CC: hash(key:integer, value:integer);
SEQ: hash(key:integer,
value:1list of tuples (11, hl, h2) of integers);
SA: array[l...|T|] of integer; //suffix array
Hgt: array[1...|T|+1] of integer; //height array
node, freq: stack of tuples (c, 1, h) of integers;
L, H, L_i, H.i, H_f, child, f, i, j: integer;
begin
SA:=Suffix_Array(T); //Compute the suffix array
Hgt:= Fast_Hgt(T, SA); //Compute the height array
Push((0, -1, -1), node);
for i:=1 to |T|+1 do begin
L_i:=i-1; H_i:=Hgt[il;
(child, L, H):=(c, 1, h) of the top tuple in node;
while (H > H_i) do begin
Pop(node) ;
for j := 1 to child do begin //loop(1)
(f, H_f):= (c, h) of the top tuple in freq;
0CC{f} += (H_f-H)/f;
Add((SA[L], H_f, H), SEQ{f});
Pop(freq);
end; //for
if (child = 0) then Push((i-L, L, H-1), freq);
else then Push((i-L, L, H), freq);
L_i:=L;
(child, L, H):=(c, 1, h) of the top tuple in node;
child++;
end; //while
if (i = 1) then Push((0, 0, 0), node);
else if (H < H_i) then Push((1, L_i, H_i), node);
else then Increment c of the top tuple in node;
Push((0, i, |TI|-SA[i]l), node);

end; //for
return (0CC, SEQ);
end;

Figure 7: Count() enumerates all branching strings
using the suffix array and calculates vocabulary sizes
for all frequencies

dren nodes of v using their tuples (¢, 1, h).

We estimate the time complexity of Count(). Let n be
the total length of a given sample. TraverseWithArray ()
needs the suffix array of the string and its height array. A
suffix array is computed in linear time The height array is
also computed in O(n) time, thus TraverseWithArray works
in O(n) time [12].

A tuple (¢, I, h) for each node in a suffix tree is pushed
on freq exactly once. The number of nodes in a suffix tree
is at most O(n), therefore, the loop(1) in Figure 7 repeats
exactly n times in total. Thus, Count () works in O(n) time.
Thus, it is trivially that this spam detection algorithm is in
linear time. This algorithm returns V(maxf), so if we want
to detect some spams, we must repeat this algorithm.

The substring amplification has wrong spikes if the fre-
quency is large. But this spam detection algorithm does not
have such wrong spikes even if the frequency is large and the
number of the substrings is tiny. In this algorithm, f — 1
and f + 1 may be not successive for f. If f is so large, the
successive f —1 and f+ 1 does not exist in high probability.
We need not consider the nonexistence because spams do
not exist on large noncontiguous frequency.
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Figure 8: Consumption time by counting all sub-
strings is showed in seconds. Data size is about from
200M to 1.5G bytes. This scalability is for one spam
detection, not for SpamDetectionAlgorithm in Fig-
ure 6

This algorithm enables us to detect the spams automat-
ically without human efforts. But this algorithm cannot
know lower bounds of the length and the number of copies
of the spams. Thus, in the next section, we examine the
bounds and capability of a real spam detection on the Web.

4. EXPERIMENTS

We implemented the algorithm in Figure 62 on IBM eS-
erver p5 model 595°. Using this implementation, we show
the scalability and the applicability of the spam detection
algorithm.

4.1 Scalability

Figure 8 shows that the time consumed by Count () rou-
tine is linearly proportional to the input size, where input
data size is about from 200M to 1.5G bytes. This scalabil-
ity is for one spam detection, not for all spams detection.
The time required for about 1.5G bytes messages is about
30 minutes.

4.2 Lower Bounds of the Length and the Fre-
quency of Spam Messages

It is easy to detect long and frequent spams, but we do not
know how short spams or how few copies of a spam can be
detected by the spam detection algorithm. In this section,
we estimate the lower bounds of the length and frequency
of detectable spams.

We prepare 2350 samples whose sizes are fixed to 100
messages. And the sizes of all messages are also fixed to
100 letters. In these fixed samples, we embed copies of one
spam into some of 100 messages, where both the length of
it and the number of its copies are varied among samples.

2Some linear time algorithms to construct a suffix array have
been proposed, such as [13]. However, our implementation
uses deep-shallow() [14] whose worst-case time complexity
is O(n?logn), because it is faster than other algorithms in
practice.

3 Although eServer p5 model 595 has 416 CPUs, we used
only one CPU.



Table 1: The probability for appearances of alphabet
letters in English sentences

letter | probability || letter | probability

a 0.0668 0 0.0654

b 0.0118 D 0.0162

c 0.0226 q 0.0010

d 0.0310 r 0.0559

e 0.1073 s 0.0499

f 0.0239 t 0.0856

g 0.0163 U 0.0201

h 0.0431 v 0.0075

i 0.0519 w 0.0126

J 0.0011 x 0.0014

k 0.0034 y 0.0162

l 0.0278 z 0.0006

m 0.0208 space 0.1817

n 0.0581
The number of copies of the spam is 2, 4, ..., or 100, and
the length of the spam is 4, 5, ..., or 50. Thus, we have

50 x 47 = 2350 samples.

All messages including the spam are pseudo English sen-
tences which are generated randomly. We use Table 1 of [16]
as the probabilities of the letters.

Figure 9 is the result with the spam detection algorithm.
Each row corresponds to the length of the spam, and each
column does to the number of messages containing copies of
it. Black cells mean that the spam cannot be detected, while
white cells mean the spam can be detected. We call a white
cell a detectable one. We know the frequency f. of the spam,
so we can judge whether f providing the maximal D(f)
equals f. or not.

From Figure 9, we know that the algorithm detects a
spam if its length is larger than 10.

We also conducted the same experiment using the sub-
string amplification. The number of detectable cells by the
spam detection algorithm is 2054, while the number of de-
tectable® cells the substring amplification is 2140. The spam
detection algorithm detected less spams than the substring
amplification, because we misjudged the frequency of the
remarkable spike in the substring amplification. In other
words, even if the remarkable spike is at f — 1, we tend to
consider that the spike is at f, because we know the fre-
quency of the spam in advance. This is due to the impreci-
sion of spike judgment by the human seeing.

Another significant difference among the substring ampli-
fication and the spam detection algorithm is time required
by them. The substring amplification took about several
hours because we have to see all graphs. On the other hand,
the spam detection algorithm took only a few minutes.

4.3 Lower Bound of the Number of Copies of
Spam Messages

On popular online blog and forum sites, there exist a huge

number of messages. In such a situation, we must detect

spams, though the number of copies of one spam might be

4In this case, the decision whether a cell is detectable or not
is made by the authors subjects

Table 2: Spams in DataSet2

length | number
20 50
30 100
40 101
50 102
30 150
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4e+006
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3e+006

2.5e+006

total occurrence
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1.5e+006

1e+006

500000

0

1[‘)0
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Figure 10: The total occurrence values T'(f) for the

sample which have 200000 messages, where x-axis is
frequency in log scale (30 < f < 300)

relatively small, because we cannot collect all messages. In
this section, we examine the lower bound of the number of
copies of spams. In addition, we compare the spam detection
algorithm with the substring amplification.

We fix the set of 5 spams whose length and the number
of spams are defined in Table 2. In a sample, 50 (resp. 100,
101, 102, and 150) messages contain the same copies of the
spam of length 20 (resp. 30, 40, 50, and 30).

There are 7 samples which contain 1000, 10000, 30000,
50000, 80000, 100000 and 200000 messages. All samples
the same number of spams, and so the number of messages
which do not contain the spams are different. A message
has 1000 letters. We use the same probabilities in Table 1.

We examine whether a spam can be detected in the case
that the number of the total messages is much larger than
that of spams. Figure 10 is a result graph by 200000 mes-
sages. This sample has 102 spam whose length is 50, thus
the spike should appear at f = 102. We cannot find any
spike in the total occurrence-frequency plot, where 0 < f.
Even if we zoom in around 30 < f < 300 (Figure 10), the
spike is not so remarkable.

In contrast, the spam detection algorithm can detect the
spam. A result of the spam detection algorithm is Figure 11,
where z axis is frequency f in log scale and y axis is the
conditional expression D(f). According to Figure 11, it is
easily for the spam detection algorithm to detect the spam,
while the substring amplification cannot detect it.

4.4 Data from an Online Blog

The preceding two experiments used artificial data. We
can estimate the lower bound, because we can change pa-
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Figure 9: (i, j)-cell is a result of the sample which has j spams of length i.The black cells mean that the spam
detection algorithm cannot detect spam, and white cells mean that the algorithm can detect spam
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Figure 11: The conditional expression values D(f)
for the sample whose messages are 200000 of Date-
Set2, where z-axis is frequency in log scale

rameters, such as the length, the number of spam messages,
etc. In this section, we examine whether the spam detection
algorithm can detect real spams among real messages from
an online blog.

We use a sample collected from “Arianna’s blog®”. One
file corresponds to one page which includes blog lists, blog
contents, coments, or/and track back. HTML tags are re-

Shttp://www.ariannaonline.com/blog/index . php
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5e+008 | bl
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Figure 12: The conditional expression values D(f)
for the sample from “Arianna’s Blog”, where z-axis
is frequency in log scale

moved in these files in order not to lead the tags to com-
pose spikes. We collected 27,190 files whose total size is
151.09MB.

We do not know what kinds of spams are included, or
moreover whether this sample includes spams or not. For-
tunately, we found some spams. Table 3 is the result sorted
by conditional expression D(f). In Figure 12, z-axis is the
frequency and in log scale, and y-axis is the conditional ex-
pression D(f).



Table 3: This table is the result of spam ditection
algorithm for “Arianna’s blog”, whose rank is sorted
by the value D(f).

rank f V(f) T(f) D(f)
1 14 | 2129126914 | 29807776796 | 2113140742
2 4 1452192568 | 5808770272 1383153658
3 34 292089513 9931043442 289234115
4 6 163948953 983693718 129228621
5 150 25232763 3784914450 25203203
6 9 69918089 629262801 24948258
7 27 26797113 723522051 21702500
8 74 20290784 1501518016 20141172
9 316 11312892 3574873872 11310990
10 23 15330324 352597452 10934478
11 840 11435342 9605687280 10778713
12 18 17119809 308156562 10279396
13 16 15995164 255922624 5830974
14 92 5710183 525336836 5687658
15 334 4795475 1601688650 4794884
16 799 5218786 4169810014 4749966
17 284 4471440 1269888960 4469877
18 40 4855614 194224560 4378191
19 31 5971169 185106239 4256154
20 21 10835650 227548650 3644976

In Table 3 and Figure 12, the highest rank or spike is
at f = 14. The longest string which appear fourteen times
is a spam, in a general sense. The spam is the string of
length 60,609 and the number of the spam is 3,768 words.

This spam detected by the spam detection algorithm in-
cludes several URLs which are not related with contents of
this blog. The number of these URLs are aberration for one
comment. Hence, these strings can be said spams in a gen-
eral sense. The following strings are the part of the detected
spam.

&#8226; @ &#8226; www &#8226; Reply
http://www.scorpion.my100megs.com
http://www.termites.ownsthis.com
http://bradpitt.freewebpage.org
http://www.quentin-tarantino.741.com
http://wuw.depeshe-mode.greatnow.com
http://www.mickeyrourke.esmartweb.com
http://www.crocodile.ownsthis.com
http://www.gitler.150m.com
http://wuw.titanic.741.com
http://www.chacknorrice.freewebpages.org
http://wuw.george-clooney.741.com
http://www.penelopecruz.batcave.net

http://milfseeker.com-top.net/terra.html
http://milfseeker.com-top.net/devon.html
http://teensforcash.com-top.net/FREE.html
http://teensforcash.com-top.net/KATHLEEN. html
http://teensforcash.com-top.net/ALEXIS.html
http://teensforcash.com-top.net/VIDEQ.html
http://teensforcash.com-top.net/NICOLE.html

Posted 1 year, 7 months ago by Anonymous *++ Reply
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Figure 13: The spam detection algorithm detects
the spam written by Chinese in Blog written by En-
glish. The length of this spam is 5,494, and the spam
appears 4 times.

http://teensforcash.com-top.net/RANDI.html
http://teensforcash.com-top.net/MEGAN.html
http://teensforcash.com-top.net/KIMMIE.html
http://teensforcash.com-top.net/BIANCA.html

&bull; Trackback URL: http://ariannaonline.com/blog/
bblog/trackback.php?tbpost=2

Next, we remove this spam from dataset, and recount.

When we repeat this operation, we detect other spam(Figurel3).

This spam is written by Chinese, and the length is 5,494.

S. CONCLUSION

We developed a spam detection algorithm whose key ideas
are the Zipf’s law and the vocabulary size. In our experi-
ments using artificial data, the algorithm found blog spams
whose length were greater than 10. So we can say that
the algorithm finds blog spams practically. Furthermore,
we showed that this algorithm can detect spams in real blog
samples.

This algorithm judges a blog entry as a spam by the con-
ditional expression D(f), and the detected spam is removed
from data set. The algorithm detects several kinds of spams
because this algorithm repeats this operation. Thus there
remains the problem how many repeat this operation does.

If a spammer copies a whole blog entry many times, the
spam detection problem became much easier, because it is
enough to just sort all blog entries alphabetically and then
count the number of the same entries. However, there exist
modified versions of one spam, such as the spam found in



Section 4. Therefore, we cannot conclude that counting unit
is the whole message. In this situation, it is difficult for
existing methods to detect spams.

The proposed method can detect some spams and tem-
plates. Thus, finally we must check whether found sub-
strings are spams or templates. We expect that the fre-
quency of spams is different from that of templates, because
templates appear almost in data set but spams appear a
few. We, however, do not know the difference clearly. We
will detect all spams smartly by solving this.
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