
Integration of Semantic Web Technology in an
Annotation-based Hypervideo System

Olivier Aubert, Pierre-Antoine Champin, and Yannick Prié

LIRIS, University Claude Bernard Lyon 1
F-69622 Villeurbanne Cedex, France

firstname.lastname@liris.cnrs.fr
http://liris.cnrs.fr/firstname.lastname

Abstract. This article discusses the integration of semantic web technologies
(ontology and inference) into audiovisual annotation based models and systems.
The Advene project, aimed at all purpose hypervideo generation from annotated
audiovisual documents, is used as a testbed. Advene principles and the Advene
prototype are first presented, before a discussion on how ontology and reasoning
have been easily integrated into the Advene framework. Somemotivating exam-
ples are proposed, and our proposals and related works are discussed.

1 Introduction

This article has two primary goals and one angle of vision. The first goal is to present
the Advene (Annotate Digital Video, Exchange on the NEt) project, rationale and pro-
totype, as a powerful set of ideas and tools for designing andtesting innovative uses
of video through rich video annotation and hypervideo generation. The second goal is
to present how semantic web technologies can be used in the Advene framework, in
order to provide extra features mainly related to ontological reasoning. The angle of
vision we adopt throughout the article is more related to theaudiovisual annotation and
hypermedia document engineering than to the semantic web. Our main concern is to
study what semantic web technologies can bring to audiovisual annotation, hypervideo
construction and audiovisual information systems.

We generally consider [1] that full audiovisual information systems (AVIS) should
provide users with the possibility to search into video bases using indexes, to select
from the retrieved documents the most relevant for the current task, and to reuse parts
of documents, mainly in new hypermedia documents (simply watching them being a
very simple reuse for instance). We also claim that annotations are the pivot to such au-
diovisual information systems, as they provide all the necessary information to search,
select and manipulate audiovisual documents and fragments.

As a means to understand present annotation-based audiovisual information systems
and to design future ones, we choose to use the hypervideo concept.Hypervideos[2]
refer to hypermedia documents that are constructed fromannotated audiovisual docu-
mentsinformation: digital audiovisual documents (moving images and related sounds)
and annotations for these audiovisual documents, which aredigital pieces of informa-
tion in relation with spatio-temporal fragments of the documents. Examples of hyper-
videos include web pages that refer to a video using some excerpts as key images,

video streams enriched with textual information and hyperlinks, reconstructed audiovi-
sual streams, etc.

The next section of this article presents the Advene model and prototype for hy-
pervideo engineering. The following section describes howwe easily added semantic
web reasoning capabilities to the Advene prototype thanks to its flexible model. The
last section deals with some examples of semantic web-enriched uses of annotations in
the context of Advene and more generally in the AVIS/hypervideo context.

2 Advene model and prototype

The Advene project aims at providing tools to exchange various analyses about movies
stored in digital form (digital video files, DVDs...), and more importantly, offer the
possibility to enhance and customize these analyses. Analyses are built upon annota-
tions, which represent pieces of data of any type that are (spatio)temporally linked to
the movie. The Advene prototype thus provides means to create and modify annota-
tions, as well as to specify how they should be rendered in meaningful ways. Instead of
exchanging the sole final form of an analysis, the Advene project makes it possible to
rather exchange annotations and the specification of their visualisation, thus allowing
end-users to customize data and visualisations in order to fit their needs.

We will see in this section how data is organized by the Advenemodel, and how the
model is implemented in the current prototype1.

2.1 The Advene model

It is commonly agreed that the handling of audiovisual contents has to use metadata,
the audiovisual data itself being not fitted to indexing or querying without any pre-
processing. Of the various existing approaches, let us givean overview of two important
standards – MPEG-7[3] and Annodex[4] – and see how our proposal relates to them.

MPEG-7 aims at being the standard representation format to exchange metadata
associated to audiovisual streams. It provides means to link metadata to portions of au-
diovisual documents. The MPEG-7 standard defines standard metadata, mostly focus-
ing on low-level descriptors automatically extractable from the audiovisual document
(colors, textures, shapes, audio characteristics...), aswell as a way to specify additional
metadata through XML Schema. It is used by some vendors, but acommon complaint
is the complexity of its model, which makes it difficult to usefor simple things or for
interoperation with other standards [5].

The Annodex[4] projects aims at creating acontinuous media webwhere metadata
is embedded in audiovisual documents, making them indexable and searchable. Aiming
at simplicity, itsContinuous Media Markup Language(CMML) is inspired by HTML,
and allows to quickly edit metadata. After edition, CMML files are combined with the
audiovisual documents. Annodex solves the simplicity issue (using an HTML inspired
syntax), at the expense of a lack of structure. Moreover, it merges metadata with the au-
diovisual document, making it harder to use different metadata for the same audiovisual
document.

1 available fromhttp://liris.cnrs.fr/advene/

The Advene model somehow aims at bridging the gap between both approaches:
it provides a way to link metadata to audiovisual documents.It does not impose any
constraints on the nature of metadata, and keeps metadata separate from the audiovisual
document, so that they can evolve and be exchanged independently from each other.

Annotation structure We developed the Advene model based on our reflexion about
hypervideos [1]. AnAnnotated Audiovisual Document(AAD) is an audiovisual doc-
ument augmented with metadata. Processing both the audiovisual document and its
accompanying metadata givesviewson the AAD, some of them qualifying ashyper-
videos: views of the AAD that on the one hand use information from both the audio-
visual documentand the annotation structure, and on the other hand give access to the
temporality of the audiovisual document.

In the Advene model, described more precisely in [2], the annotation structure con-
sists mainly ofannotations, that contain data and are linked through a temporal (pos-
sibly spatio-temporal) fragment to a specific portion of theaudiovisual document. The
structure of data contained in the annotations is not specified by the model: it can be any
type of data (simple text, structured information, audio documents, office documents...).

In order to be usable, while retaining their genericity, annotations are flexibly struc-
tured:annotation typesdefine the kind of content (through a MIME-type specification)
held by annotations. Multiple annotation types can be used to describe a number of
analysis facets. Moreover,relationsallow to link annotations with each other, and are
specified byrelation types. Relation types define the types of annotations that can be
linked, as well as an optional content MIME type for relations.

As annotation types and relation types define a certain pointof view in the document
analysis, they are grouped as meaningful sets calledschemas. An Advene schema thus
defines annotation types and relation types that form together an analysis framework.

Let us illustrate this structure through a simple example. Consider a movie contain-
ing a lot of flashbacks. The analysis of the temporal relations of the various narrative
sequences (also calleddiegetic chronology) can be used to discourse about the narrative
structure. We define an Advene schema calleddiegetic chronology, that contains two
annotation types:shot, that represents a shot as the basic unit in movies anddiegetic
sequencethat represents a chronologically consistent unit. A relation type,followed by,
will allow to link a sequence to the following one in the diegetic chronology. Another
schema, calledmovie, contains among other types acharacterannotation type, that rep-
resents a character. Figure 1 sums up these schema, figure 2 present how it is possible
to annotate a movie using the diegetic chronology schema.

shot
(text/x−advene−structured)

−shot number
− short description

sequence
(text/plain)

− Title

followed by

character
(application/vcard)

Vcard

moviediegetic chronology

...

Fig. 1. Thediegetic chronologyandmovieschema

shot shot shot

AV document

Annotations

Structure

t

Annotation

Structure

shot

followed by

sequence sequencesequence

shot

Fig. 2. An annotated audiovisual document

One of the design goals of Advene is to allow users to specify themselves how they
want the annotations to be rendered. The Advene model definesthe notion ofview,
that represents a way to display annotations. Moreover, visualising data also means
selecting the data to be visualised: aqueryrepresents a way to select elements from the
annotation structure.

Annotations

Schemas
Annotation types
Relation types

Relations

Views

Package

Queries

Fig. 3. Overview of the Advene model

Figure 3 gives an overview of the different elements of the Advene model. They are
stored in documentary units calledpackages. A package is a document that holds all
relevant information (schemas, annotations, queries and views) allowing to exchange,
modify and visualise the metadata associated to an audiovisual document. Being sepa-
rate from the audiovisual document, it can be modified and exchanged independently.

2.2 The Advene prototype

The Advene model is fairly generic. Some decisions regarding the implementation of
query or view languages had to be made in the prototype.

Visualising annotations in the Advene prototype The Advene model defines a notion
of view, without specifying what is in a view, which is a decision left to the implemen-
tation. The Advene prototype proposes three types of views:ad-hoc views (GUI views),
static views (HTML templates) and dynamic views (set of rules allowing to dynamically
modify the movie rendering).

Ad-hoc viewsare programmed views built in the GUI, that the user can configure. They
feature standard views found in audiovisual software (time-line views, hierarchical data
view, transcription view...).

Static views are XHTML templates that can be applied on the data. We are reusing
the ZPT (Zope Page Templates) template system from the Zope platform [6]. This tem-
plate system is oriented towards XML templates edition, using attributes in a dedicated
namespace as processing instructions. Thanks to this attribute-based approach, both
templates and result documents are valid XML documents, which allows us to process
them with standard XML processing tools, like theepozWYSISWYG browser-based
editor [7] that has been integrated in the prototype.

Another component brought by the ZPT framework is the TALES syntax, that pro-
poses a simple, path-like addressing scheme to address elements from a data model.
This approach does not try to be a full query language, such asXPath wrt. XML, but
instead to provide a simple, user-accessible way of addressing elements. For instance,
the expression/package/annotationTypes/sequence/annotations/first/content/data ad-
dresses the content of the first annotation of typediegetic sequence.

Dynamic viewsare able to dynamically change the way the movie is played, based on
the annotations’ content. Using a rule-based model similarto the filtering capabilities of
e-mail software (Event-Condition-Action [8]), dynamic views allow the user to specify
various actions to be executed when some events occur. The actions range from simple
VCR-like functionality (pause, go to a position, stop...) to more elaborate video control
(display captions – text or graphic – on the video, get a snapshot...), and also provide
user-interaction facilities (information popups, navigation popups offering to go to an-
other position...). The events are triggered by the annotation structure (annotation begin,
annotation end...) or by user actions (player pause, playerstart...).

With this simple rule-based specification, it is possible toenrich the movie with
information issued from the annotation structure, or even change the way the movie
is played. The ruleWhen the eventannotation begin occurs, display the annotation
content as a caption if the annotation type issequence displays the sequence title over
the video. The ruleWhen the eventannotation end occurs, go to the beginning of the
related annotation if there exists afollowed by relation will make a dynamic montage
of the movie, restoring the diegetic chronology of the sequences.

Queries offer a way to select elements from the annotation structure. A simple query
implementation has been integrated in the prototype, usingthe same framework as the
dynamic views: elements matching a given condition can be extracted from a given set
of elements. This approach has proved flexible enough to accommodate various needs
in our experimentations: selecting elements based on theircontents, their temporal re-
lationships (through Allen relations) or their relations.

Architecture of the Advene prototype The open-source Advene prototype reuses
standard software components: it embeds the versatile, open-source and cross-platform
VLC video player [9], uses the ZPT template model from Zope, and uses a standard web
browser to visualise the rendition of the ZPT templates. Figure 4 provides an overview
of the prototype architecture.

The Advene prototype has been written in python, which proved an excellent choice
for rapid development and experimentation. It provides a testbed for the development

Web browser
Web

server
Advene
model
(data

access) Video player

Advene core :

XHTML generation

Event
engine

User
interaction

Video
output

Advene GUI

Fig. 4. The Advene prototype architecture

of new ideas in the field of multimedia annotation handling and visualisation. It is being
used in ongoing collaborations with researchers in human interactions (who study video
recordings) or movies study, as well as by individual researchers that use audiovisual
material. The following section describes how we have integrated OWL in Advene.

3 Integrating OWL in Advene

In this section, we demonstrate how OWL descriptions and inferences integrate smoothly
inside the Advene model and prototype presented before. This will be illustrated with
the example Advene schemas from the previous section.

We propose here a two-steps integration of OWL in Advene: exposing Advene ele-
ments as an OWL description, then performing inference overit and getting the results
back into the Advene model. The first step is achieved by usingAdveneviews, while
the second one is performed by dedicated Advenequeries.

3.1 OWL views

Exposing Advene elements as OWL can be done in two non-exclusive ways: using
views to “expose” Advene structures as OWL structures, or putting OWL statements
inside annotations/relations (as their content).

Viewing Advene structures as OWL The first way is a direct application of the gen-
eral notion of view in Advene, using OWL as a target format. Itis straightforward in
the current implementation since everything in an Advene package already has a URI,
and since ZPT (the template language used to define static views) is able to produce any
kind of XML document.

First, an XML view can do a straightforward “translation” ofthe Advene structure,
according to an ontology of the Advene model (with classes such as Package, Annota-
tionType, Annotation, etc.). Such a view can be imported in any other Advene package
and enhance it with OWL export capabilities.

Beyond that simple translation, schema authors may want to devise more specific
OWL views in order to embed the underlying semantics of theirschema, so that the
produced OWL statements are more richly describing the annotation structure. For ex-
ample, we can imagine that the designer ofdiegetic chronologywould represent the

binary relationfollowed byby an OWL property rather than by OWL instances2, and
impose thatdiegetic sequenceannotations be followed by at most one other sequence.

Another approach is to design an Advene schema on top of a pre-existing ontology
in order to use that ontology in the context of video annotation. For example, one could
want to describe people or characters appearing in a video with the FOAF3 ontology,
which allows to describe persons, relations between them, and the groups to which they
belong. This can easily be done by defining a schema with an annotation type for each
class of the ontology and a relation type for each property, then provide a view con-
verting annotations complying to this schema into an OWL description complying with
that ontology. This scenario shows that, instead of considering the OWL description as
a by-product of the Advene package, one can consider Advene as a front-end tool for
annotating videos with OWL.

OWL statements in annotations/relations content Putting OWL statements inside
annotations/relations is also a straightforward application of Advene principles, which
does not impose any data type on their content. One could for example add such a
content in annotations of typeshotin order to formally describe the depicted scene (e.g.
with the ontomedia ontology [10], intended to describe fictional films). One could then
query each annotation individually to perform inference over its content. But inference
would not here take advantage of the fact that annotations are attached to a fragment of
the video stream.

Yet the anchoring of OWL statements in the stream can be takeninto account by
groupingseveral contents, according to various criteria which we call reasoning con-
texts, and which can in turn be materialized by other annotations.For example, one
might want to reason on the content of all shots temporally contained in a given diegetic
sequence. Or, assuming that a relationappears inexist betweencharacterandshotan-
notations, one might want to reason on the content of all shots where a given character
appears (see figure 5).

Fig. 5. Annotations of typecharacteror diegetic sequencecan be used as reasoning contexts for
the OWL contained inshotannotations.

2 Advene relations may involve more than two annotations, andthey may have a content. The
default is hence to represent them by OWL instances.

3 http://xmlns.com/foaf/0.1/

Using annotations as reasoning contexts over multiple OWL-annotations can be
achieved by defining specific views over the context annotations themselves, where
an OWL ontology is generated, importing all the contents of the relevant annotations.
TALES expressions and Advene queries can indeed be used in views to retrieve anno-
tations based on temporal relationship or Advene relations. In the example of figure 5,
applying the “temporal inclusion” view tod1 would generate an ontology importing
the contents ofs1 ands2, while applying it tod2 would imports3 ands4. On the other
hand, a view using theappears inrelation would generate an ontology importings1 and
s3 when applied toc1, and onlys4 when applied toc2. We see that OWL statements
can be used in different context, depending on the point of view used to group them.

Mixing the two Of course, those two approaches can be mixed: specific OWL views
can take advantage of both the annotation structure and contents to provide rich descrip-
tions of the annotated video, as described in [11].

3.2 OWL Queries

We just saw how Advene elements can be viewed through an OWL description. In prin-
ciple, any DL inference service [12] can be used to query thatOWL description. How-
ever, we mainly focused on the use of A-box querying (see section 4), for it integrates
smoothly with the notion of query in Advene, as we will see.

For this purpose, we use the SPARQL language4, a general purpose RDF query
language, to query thedeductive closureof OWL views (i.e. not only the expressed
triples, but also all the triples which can be inferred from them). More precisely, we
restrict ourselves to SELECT queries5. The sample query in figure 6 illustrates the
main features of SPARQL. The PREFIX clauses define namespaceprefixes used in the
other clauses. The FROM clause locates the source of information to be queried. The
WHERE clause describes a subgraph to be searched, where somenodes (whose name
starts with a question mark ’?’) are variables. The OPTIONALsub-clause describes a
part of the subgraph which is not required to match the query.Finally, the SELECT
clause indicates which variables are to be returned (variables from the OPTIONAL
clause may have a null value). The result of such a query is a list of tuples, each one
being a binding of the selected variables, satisfying the query. We will now show how
this is compatible with the notion of query in Advene.

Queries in Advene are used asfilters: from a set of Advene elements (possibly
the whole package), they select the subset of elements matching the query. SPARQL
queries in Advene only require that the initial set of items is described in RDF (which
has been made possible by the OWL views described previously), and that the URI
bound to the variables in the result are converted back to theAdvene element they
identify6.

4 http://www.w3.org/TR/rdf-sparql-query/
5 SPARQL has other kinds of queries (CONSTRUCT, DESCRIBE) butthey have different kinds

of results, which do not fit in Advene queries
6 Actually, there are two more slight differences: SPARQL queries return a set oftuplesrather

than a set of single elements, and those tuples may not only contain Advene elements but

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?x ?nx ?g
FROM <http://localhost:1234/packages/nelson/view/foaf_report>
WHERE {

?x rdf:type foaf:Person ;
foaf:name ?nx ;
foaf:knows ?y .

?y foaf:name "Ted Nelson" .
OPTIONAL {
?g rdf:type foaf:Group ;

foaf:member ?x .
}

}

Fig. 6. A SPARQL query, retrieving the URI and name of every person knowing Ted Nelson, the
URI of the group they belong to if any.

Implementation We have implemented a basic SPARQL support in Advene using
Pellet7 as an external inference and query engine: Pellet is indeed able to perform A-
box querying with SPARQL over OWL models. Pellet accesses the OWL views and the
query through the HTTP server embedded in the Advene core (see figure 3).

3.3 OWL in Advene: a working illustration

So as to demonstrate the feasibility of our approach for integrating OWL in Advene,
we designed several schemas that correspond to the different possibilities we presented
above. All these examples concern an example video featuring a ten minutes Ted Nelson
speech at the ACM Hypertext 2003 conference. A first package had been designed as
a proof of concept of various Advene features. We have extended this package with
semantic web capabilities as a demonstration of the ideas presented in this article8. We
will further refer to it as thenelson-swpackage.

As a first proof of concept, we designed an ontology for the simple straightforward
OWL translation of an Advene package, and a package containing the associated ZPT
views for effective transformation. This package is imported by thenelson-swpackage
and provides it with generic OWL export according to the aforementioned ontology.

To go beyond that simple translation, we experimented the idea of enriching the
resulting ontology with some knowledge that could enable reasoning over the package.
For this, we created a “Virtual Montage” schema, defining a dynamic view driven by
two binary relations:boundariesis used once to define the start and end of the virtual
montage, andjumpTois used between annotations in order to force the player to jump

alsostrings(literals and unresolved URIs). However, the current implementation of static and
dynamic views has no problems dealing with tuples and strings.

7 http://www.mindswap.org/2003/pellet/
8 http://liris.cnrs.fr/advene/packages/nelson-sw/

from the end of the first annotation to the beginning of the second one (see figure 7).
OWL is used here to check that those relations are used in a consistent manner: there
should be exactly one start and one end, and the jumps should form a single path (no
loops, no branches) leading from the start to the end. A specific OWL view exports an
ontology expressing those constraints in addition to the description of the annotation
structure. The resulting OWL will hence be semantically consistent only if the virtual
montage is valid. By importing this schema and view in thenelson-swpackage, and by
re-usingUtteranceannotations (created as a transcription of the discourse),we were
able to build a two minutes long abstract of Ted Nelson’s speech, after checking that all
the constraints for the montage were fulfilled.

Fig. 7. An extract of thenelson-swpackage
demonstrating the “Virtual Montage” and “FOAF” schemas

Another possibility we mentioned in section 3.1 was to design an Advene schema on
top of a pre-existing ontology so as to use that ontology for audiovisual annotation with
Advene. As an example, we used the FOAF ontology, considering three of its concepts
(Person, Group and Document) and the relations between themfor being represented
respectively as annotation types and relation types from a dedicated schema, which has
also been used in thenelson-swpackage (see figure 7). A package using that schema
can then be used as any other Advene package, enhanced with validation and inference
services thanks to the associated ontology (see section 4);but Advene can also be seen
in this case as a front-end for annotating a video with FOAF, considering the OWL
view as the primary output target (with some added value, such as e.g. the automatic
generation of a “depiction” property linking instances of Person to a snapshot of the
annotated video fragment).

Note also that, beyond the translation of “external” structures (i.e. inter-linked anno-
tations and relations), the “internal” structure (i.e. content) of annotations and possibly
relations, can also be used in the OWL generation. We mentioned that annotations can
contain OWL data. In our schema, they contain a simply structured text where each
line has the formkey=value. The OWL view takes advantage of this internal structure,

by recognizing a number of FOAF properties (name, homepage,currentProject...) and
generating the appropriate statements about the corresponding resource. We can also
imagine that annotations with type Person would simply contain the URL of the per-
son’s FOAF profile, which would then be imported in the OWL view.

4 Using OWL in Advene

In this section we explore the benefits, from the point of viewof video annotation, of
OWL-enhanced Advene. We do so by presenting a number of prospective scenarios
made simple with OWL inference when they would have been complicated, when not
unfeasible, with more “classical” queries and views. As illustrated in figure 8, some
scenarios are focused on helping the annotator in her task, while others are focused on
the end-user.

Fig. 8. The schema designer provides a schema (not represented) with OWL views, OWL queries,
XHTML views and dynamic views adapted to that schema. The annotator creates annotations
complying with the schema. Some of the views help her in her annotation task, while other views
are aimed at the end-user.

Checking consistency

We already mentioned that OWL allows schema designers to express semantic con-
straints on the use of their schemas. For example, the aforementioned “Virtual Mon-
tage” schema states in OWL that no annotation should be the source or the destination
of more than one jump (i.e. that the montage should be linear). OWL consistency check-
ing can then be used by the annotator to ensure that her annotation structures complies
with the underlying semantics of the schema. Some engines, including Pellet, even pro-
vide human-readable explanations of why a given OWL description is inconsistent (see
figure 9, section “Consistency”). Indeed, inconsistency will generally lead to unsatis-
factory results from the other views provided with the schema; in the case of the virtual
montage, only one path will be followed when playing the video.

Reporting

Specific queries and static views can also be provided by the schema designer to the
annotator, for her to check that everything complies with the intended semantics. A
first advantage over plain consistency checking is that the “errors” can be more specifi-
cally explained in those views. Another advantage is that SPARQL queries can be more
expressive than OWL classes9. A third advantage, and an important one, is that such
reporting views provide afiner grainthan boolean consistency: it can be onlysuggested
annotations respect certain constraints, though they can in some circumstances violate
them.

In the nelson-swpackage, this kind of inference has been used to detect ill-used
Advene relations. In FOAF, members of a group can be persons or other groups –more
precisely, anyAgent, a common superclass of Person and Group. Since Advene has
no notion of superclass between annotation types, the Foaf Advene schema allows its
“member” relation to link a group with any other annotation,so that annotations of type
Person or Group can be used. It follows that even a Project canbecome a member of a
group (see figure 7), though Projects are not Agents10.

An OWL view of the package is hence inconsistent when referring to the strict
FOAF ontology. However, we provide with the package a more permissive version
of the FOAF ontology, where all class disjunction axioms have been replaced by a
new class named Absurd. This class is defined to contain the intersection of all pairs
of (originally) disjoint classes. Hence, an instance of Project which should also be an
Agent (because it is a member of a group) does not make that ontology inconsistent,
but is bound to belong to the Absurd class. A list of absurd instances can then be given
to the annotator for her to check (see figure 9, section “Report”).

Advising

Moreover, some static views can evenadvisecompletions or modifications of the struc-
ture or content of Advene elements, based onannotation patternsexpected by the
schema designer.

For example, in thenelson-swpackage, the “knows” Advene relation enables the
annotator to state that a person knows another one. But the FOAF profile of a person
(represented by the content of the Person annotations) may also contain this kind of
information, under the form ”I know the person whose homepage is ...”. In FOAF, the
“homepage” property unambiguously identifies a person. Hence, the OWL reasoner can
infer that two persons are the same, then reconstruct a social network by aggregating
local information contained in each profile. In our example package, the profile of Ted
Nelson states that he knows someone whose homepage happens to be the homepage
of Wendy Hall (also explicitly represented by an annotation). The OWL reasoner will

9 More precisely, class expressions can not contain any cyclein the graph representing their
instances, while SPARQL query patterns can involve cycles.On the other hand, OWL classes
can be reasoned about independently of their instances, while queries only cope with instances.

10 This constraint is not actually stated in the original FOAF ontology, it seems reasonable
enough, and serves the purpose of a simple example.

hence infer that Ted knows Wendy. A specific view will use thisinferred implicit knowl-
edge and suggest the annotator to make it explicit by puttinga “knows” Advene relation
between the annotations representing those two people (seefigure 9, section “Report”).

Fig. 9. A static view generated from thenelson-swpackage

Generating more hypermedia

We just saw how static views can be generated thanks to OWL inference for helping
annotators in their task. The same mechanism can of course beused to generate hyper-
media aimed at end users. Non-trivial queries can be used to extract a set of elements
(e.g. “all persons known by a given person”), then use them togenerate an appropriate
static view (list of those person with a photo extracted fromthe video and a link to their
homepage, graphical representation of their social network, . . .) or dynamic view (the
“Virtual Montage” package, link from a sequence depicting aperson to the sequence
depicting people he or she knows, . . .).

5 Discussion and related work

Despite the long acknowledged need for semantically annotating multimedia docu-
ments, the unification of multimedia annotation standards with Semantic Web tech-
nologies is still a work in progress. An alleged difficulty for this unification is the lack
of interoperability between standards [5, 13], especiallybetween XML-based MPEG-7
and RDF-based OWL. Interoperability has however to be achieved since Semantic Web
technologies “as is” are not quite adapted to multimedia annotation —though some ap-
proaches attempt to fill that gap [14]. Various approaches have hence been proposed,
either to convert MPEG-7 structures into RDF based languagein order to be able to
reason about them [15], or to embed OWL ontologies into MPEG-7 structures in or-
der to take advantage of standard-compliant tools, while retaining the semantics of the
description [16]. While the former may be compared with the first approach presented
in section 3.1, the latter can be compared to our proposition(in the same section) of
designing Advene schemas according to existing ontologies.

Another hindrance to the large adoption of multimedia annotation in general is the
complexity of the dominant standard MPEG-7 [5]. It is interesting to note that Semantic
Web annotation is often the target of the same criticism, as working with (sometimes
big) formal ontology requires some training for unskilled users. Advene eschews both
by relying on a simple and extensible model for video annotation, and by not relying
on formal ontologies from the bottom; we rather propose to use third-party or ad-hoc
OWL ontologies on an opportunistic basis, i.e. when (and if)they can prove useful in a
given context. By doing so, we argue that Advene meets the requirements for practical
multimedia annotation expressed by [17].

Finally, the Advene architecture can provide the functionalities targeted by other ap-
proaches: controlling and checking the structure of annotations [16] as seen in section 4,
semantic information retrieval [14] thanks to OWL queries,virtual montage [18]. But
advantage can also be taken from semantic annotation by other uses, such as enriched
video viewing, which are not, to our knowledge, addressed bythis community.

6 Conclusion

In this article we have presented some ideas for integratingsemantic web technologies
in an annotation-based hypervideo system, most of them already implemented in the
Advene prototype, thanks to its versatility and to the simplicity of the Advene model.
Current work on the “semantic web side” of the Advene projectentails smoother in-
tegration of OWL-queries in the prototype and graphical editing of such queries, de-
sign of more OWL-views for consistency checking, reportingand advising, design of
reasoning-enriched dynamic views, and theoretical study of the notion of “reasoning
context”. The Advene prototype is freely downloadable and extensible, and we encour-
age anybody to use it for testing new ideas on multimedia and semantic web.

References

1. Aubert, O., Prié, Y.: From video information retrieval to hypervideo management. In: Cori-
media, the international workshop on multidisciplinary image, video, and audio retrieval and
mining, Sherbrooke, Canada (2004) 10 pp.

2. Aubert, O., Prié, Y.: Advene: active reading through hypervideo. In: ACM Hypertext’05.
(2005)

3. Sanchez, J.M.M., Koenen, R., Pereira, F.: MPEG-7: The Generic Multimedia Content De-
scription Standard, Part 1. IEEE Multimedia Journal9(2) (2002) 78–87

4. Pfeiffer, S., Parker, C., Schremmer, C.: Annodex: a simple architecture to enable hyper-
linking, search and retrieval of time-continuous data on the web. In: 5th ACM SIGMM
International workshop on Multimedia information retrieval. (2003) 87–93

5. van Ossenbruggen, J., Nack, F., Hardman, L.: That obscureobject of desire: Multimedia
metadata on the web, part 1. IEEE MultiMedia11(4) (2004) 38–48

6. Zope Corporation: Zope Page Templates reference. (2004)http://www.zope.org/
Documentation/Books/ZopeBook/2 6Edition/AppendixC.stx.

7. Jablonski, M.: Epoz, a cross-browser WYSIWYG editor for Zope. (2003)http://epoz.
sourceforge.org/.

8. Paton, N.W., ed.: Active Rules in Database Systems. Springer Verlag, New York (1999)
9. Fallon, H., de Lattre, A., Bilien, J., Daoud, A., Gautier,M., Stenac, C.: VLC User Guide.

VideoLAN Project. (2003)
10. Lawrence, F., Tuffield, M.M., Jewell, M.O., Prügel-Bennett, A., Millard, D.E., Nixon, M.S.,

Schraefel, M., Shadbolt, N.R.: OntoMedia - Creating an Ontology for Marking Up the Con-
tents of Heterogeneous Media. In: Proceedings of Ontology Patterns for the Semantic Web
ISWC-05 Workshop, Galway, Ireland (2005)

11. Troncy, R.: Integrating Structure and Semantics into Audio-visual Documents. In: Sec-
ond International Semantic Web Conference (ISWC2003), Sanibel Island, Florida, USA,
Springer (2003) 566–581

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press (2003)

13. van Ossenbruggen, J., Stamou, G., Pan, J.Z.: MultimediaAnnotations and the Semantic Web.
In: Proc. of the International Workshop on Semantic Web CaseStudies and Best Practices
for eBusiness (SWCASE). (2005)

14. Isaac, A., Troncy, R.: Using several ontologies for describing AV documents : a case study in
the medical domai. In: 2nd European Semantic Web Conference, Workshop on Multimedia
and the Semantic Web, Heraklion, Crete (2005)

15. Hunter, J.: Adding Multimedia to the Semantic Web - Building an MPEG-7 Ontology. In:
International Semantic Web Working Symposium (SWWS), Stanford (2001)

16. Troncy, R., Carrive, J.: A reduced yet extensible audio-visual description language. In:
Proceedings of ACM Document Engineering. (2004) 87–89

17. Geurts, J., van Ossenbruggen, J., Hardman, L.: Requirements for practical multimedia an-
notation. In: Workshop on Multimedia and the Semantic Web, Heraklion, Crete (2005) 4–11
part of 2nd European Semantic Web Conference.

18. Bocconi, S., Nack, F., Hardman, L.: Supporting the generation of argument structure within
video sequences. In: ACM Hypertext’05. (2005) 75–84

