
Web Data Integration Using Approximate String Join

Yingping Huang Gregory Madey
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

�yhuang3, gmadey�@nd.edu

ABSTRACT
Web data integration is an important preprocessing step for web
mining. It is highly likely that several records on the web whose
textual representations differ may represent the same real world
entity. These records are called approximate duplicates. Data in-
tegration seeks to identify such approximate duplicates and merge
them into integrated records. Many existing data integration al-
gorithms make use of approximate string join, which seeks to (ap-
proximately) find all pairs of strings whose distances are less than a
certain threshold. In this paper, we propose a new mapping method
to detect pairs of strings with similarity above a certain threshold.
In our method, each string is first mapped to a point in a high di-
mensional grid space, then pairs of points whose distances are 1
are identified. We implement it using Oracle SQL and PL/SQL.
Finally, we evaluate this method using real data sets. Experimental
results suggest that our method is both accurate and efficient.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational databases,
Textual databases

General Terms
Algorithms,Performance,Experimentation

Keywords
data integration, approximate string join

1. INTRODUCTION
Web data integration is an important preprocessing step for web

mining and data analysis. Web data is dirty due to user input errors,
different flavors of abbreviations, etc. It is highly likely that two or
more records which differ somewhat in textual representation ac-
tually represent the same real world entity. Such database records
are called approximate duplicates. Data integration seeks to iden-
tify such approximate duplicates. Once approximate duplicates are
identified, they can be merged into integrated records. Data inte-
gration sometimes is also called data cleansing, record linkage, etc.

In many existing data cleansing algorithms, approximate string
processing is a fundamental step [2, 1, 3]. In these algorithms, a
certain metric is used to define the distance between two strings.
Possible metrics include edit distance, q-gram distance, and the
vector cosine similarity metric. Once the string distance is defined,

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

these algorithms try to find pairs of strings whose distances are be-
low a certain threshold. In this paper, we use the vector cosine
similarity metric.

Once the metric is specified, it is required to detect all pairs of
strings such that their similarity is above a user specified thresh-
old. In [7], this operation is referred to as a text join. A base-
line approach to find all pairs of approximate duplicates is to ap-
ply a nested loop to compute the similarity between each pair of
strings. In practice, it is computationally expensive. In this paper,
we present a new method to address the approximate string join
problem. The details of the algorithm are presented in Section 3.

2. RELATED WORK
Li [6] proposed a mapping algorithm for efficient record link-

age. In their approach, each string is mapped to a point in a high
dimensional Euclidean space using FastMap. Then a similarity join
algorithm proposed by Hjaltason and Samet [5] is used to identify
close pairs of points in the hosting Euclidean space. The similar-
ity join algorithm is very sensitive to the dimension of the hosting
space. Thus when the dimension of the hosting space is large, the
similarity join algorithm becomes very inefficient.

Gravano [7] presented a sampling approach for performing text
join (as described later) and implemented it in an unmodified RDBMS.
In their approach, each string is represented by a sparse vector in a
high dimensional space. The dimension of the space is the distinct
number of tokens in all the strings. A low dimensional subspace
is used to calculate the similarity of strings. The accuracy of this
approach depends on the dimension of the subspace.

3. OUR APPROACH
With review of the drawbacks of both Li’s and Gravano’s ap-

proaches, we designed a new algorithm which somewhat combines
the two approaches. We first form the database of strings into a
(1,2)-B metric space (as described later) and then map the (1,2)-B
metric space into a high dimensional grid space instead of an Eu-
clidean space. In the next step, pairs of points with distance 1 are
identified. A metric space � � ����� is called a (1,2)-B met-
ric space, if the distance between any two different points is either
1 or 2, and for any points in X, there are at most B points within
distance 1.

We can consider the database of strings to be a (1,2)-B metric
space as follows. For two distinct strings s and t, if their similarity
is above the user specified threshold, we define their distance to be
1, otherwise, their distance is 2. We also assume that each string
has at most B (where B is reasonably large) other strings that are
similar to it.

Guruswami and Indyk [4] proved that a (1,2)-B metric space can
be isometrically embedded into a high dimensional grid space, as

364

shown in Lemma 1. In Lemma 1, ��� is a vector space ��� �� ���

with the maximum distance, i.e., for any two vectors � � ���� ���� ���
and � � ���� ���� ���, their distance Æ��� �� is ��	

�����
��� � ���.

LEMMA 1. A (1,2)-B metric space M=(X,D) can be isometri-
cally embedded into ���, where 	 � ��� and
 � ���
��	�.

For each � � �
, we choose a subset �� of X such that each
element of � is included in �� independently with probability �

�
.

Define mapping � � � ��� by

� ��� � ����� ���� ���� ���� ���� ���� ����

It can be shown that � is isometric with high probability. The
construction time of the mapping � is computationally expensive,
which is not desirable. To improve the efficiency of the algorithm,
some heuristic is necessary.

Using the tf.idf scheme from the information retrieval field, ev-
ery string � can be represented by a vector � � ���� ���� ��� where
� is the number of tokens obtained from all the strings. Let ����

denote the matrix formed by the vector representations of all the
strings, where each row of � is a representation of a string. Also
let �������� denote the sub-matrix of � obtained from a subset of
rows of �, where the expected value of 	�, ��	 �� � �

�
.

From the construction of the mapping in the proof of the above
lemma, we may need to compute ���

� for each � ��� ����
�.
Since we only need to compute ���� ���, only the largest entry in
each row of ���

� interests us. To compute ���
� is computationally

expensive, and an estimation of ���� would suffice to solve the
original problem. For simplicity, we remove the subscript of ��
and denote �� by �.

Let � � ��������� where �� is the �-th column of �. Simi-
larly, let � � ��������� where �� is the �-th column of �. Then

��� �
��

���

���
�
� , i.e., ��� is the sum of � matrices with rank 1.

The representation of ��� suggests that we can approximate ���

by the sum of a subset of those rank 1 matrices.
The following is the algorithm to approximate the -th coordinate

of each � in the hosting space:

1. Choose an positive integer � and uniformly randomly choose
� columns from �. Denote the columns by ��� � ���� ��� .

2. Compute � �
��

	��

����
�
��

3. For each row � of �, choose � largest entries. Let � denote
each such column.

4. Compute the similarity ����
� ��� of strings �
 and �� for
each � in the above step.

5. Let �� be the string which achieves the largest similarity in
the above step.

6. If ����
� ��� � �, then ��
�� � �, else if ����
� ��� �
�, then ��
�� � �, else ��
�� � �.

Repeat the above process
 times. We obtain a mapping from
the database of strings to the
-dimensional grid space ��� �� ���.
The magnitude of
 � �����	�, and is much less than �, the total
number of distinct tokens, in practice.

Denote the image of the mapping in ��� �� ��� by � . After we
map the database of strings into the grid space ��� �� ���, we need
to find all pairs of vectors in � , such that their distances are �
�. This step can be easily done with a simple join. Note that the
distance defined in ��� �� ��� is the maximal distance as mentioned
in previous sections.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Similarity

Precision and Recall

precision
recall

Figure 1: Precision and recall v.s. similarity

4. IMPLEMENTATION AND EXPERIMENTS
We implemented the algorithm using Oracle SQL and PL/SQL.

We evaluated our algorithm against real world data. We down-
loaded the international movie data sets from Internet and used it
to test the effectiveness and efficiency of our approximate text join
algorithm. There are several parameters in our algorithm. In this
experiment, we choose � � ��, � � � and � �. More ex-
periments are still under way for different combinations of these
parameters. Figure 1 shows that our algorithm is both efficient and
accurate, in terms of recall and precision.

Our algorithm has some potential advantages over the algorithms
presented in [7] and [6]. In [7], a large sample of the tuples is often
necessary to obtain satisfactory precision and recall. Our algorithm
computes the largest entry for each row of the matrix multiplica-
tion, a small sample suffices. In [6], the distance join algorithm
used in the resulting Euclidean hosting space is very sensitive to
the dimension. The processing time increases very quickly when
the dimension increases. In our algorithm, the processing time is
almost linear to the dimension of the hosting grid space.

5. REFERENCES
[1] L. Gravano and P. Ipeirotis. Approximate string joins in a

database (almost) for free. In Proc. 27th Int. Conf. on VLDB,
pages 491–500, 2001.

[2] L. Gravano and P. Ipeirotis. Using q-grams in a dbms for
approximate string processing. In IEEE Data Engineering
Bulletin 24(4), pages 28–34, 2001.

[3] L. Gravano and P. Ipeirotis. Text joins for data cleansing and
integration in an rdbms. In Proc. Int. Conf. on Data
Engineering, 2003.

[4] V. Guruswami and P. Indyk. Embeddings and
non-approximability of geometric problems. In Proc. 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
537–538, 2003.

[5] G. Hjaltason and H. Samet. Incremental distance join
algorithms for spatial databases. In Proc. ACM-SIGMOD,
1998.

[6] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large
data sets. In Proc. 8th International Conference on Database
Systems for Advanced Applications (DASFAA), 2003.

[7] N. K. L. Gravano, P. Ipeirotis and D. Srivastava. Text join in
an rdbms for web data integration. Proc. 12th international
WWW conf., 2003.

365

