

Exploiting Conceptual Modeling for Web Application
Quality Evaluation

P. Fraternali, P.L. Lanzi, M. Matera, A. Maurino
DEI - Politecnico di Milano

P.zza L. da Vinci, 32 – 20133 – Milano, Italy

{fraterna, lanzi, matera, maurino}@elet.polimi.it

ABSTRACT
This paper presents an approach and a toolset for exploiting the
benefits of conceptual modeling in the quality evaluation tasks
that take place both before the deployment and during the
operational life of a Web application. The full version of the paper
is available as a technical report at the address:
http://www.elet.polimi.it/upload/fraterna/FLMM2004.pdf

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques–
evolutionary prototyping, Computer-aided software engineering
(CASE). D.2.4 [Software Engineering]: Software/Program
Verification – Validation.

General Terms
Design, Verification.

Keywords
Conceptual Modeling, Web Application Quality, Web Mining.

1. INTRODUCTION
Conceptual schemas, resulting from the adoption of model-

driven methods for the design of Web applications, are rarely used
to improve the effectiveness of the quality assessment process. In
this paper, we present an evaluation framework that takes
advantage of a conceptual modeling method for supporting the
usability analysis of Web applications. The conceptual schemas
deriving from the design phase are exploited in two
complementary ways: i) before the application is deployed, for
identifying errors and inconsistencies in application design that
potentially reduce usability; ii) after the application is deployed,
for validating usability with respect to the real user experience, by
analyzing and mining Web logs enriched with semantic
information deriving from the conceptual schema. Both
techniques “speak the same language”, because they exploit the
application’s conceptual schema produced by developers in the
design phase; this facilitates the interpretation of the quality
evaluation results, and the transformation of such results into
corrective actions to be applied to the original application design,
and then propagated to the implementation with the help of code
generation tools.

The proposed evaluation framework has been defined in the
context of a specific Web modeling method, WebML [1], and has
been implemented by extending a commercial CASE tool [4].

However, we claim that the approach is of general validity, and
can be easily adapted to other model-driven Web design methods and

CASE tools, e.g., those based on UML. In fact, our approach assumes
only: 1) an XML specification of the application, e.g., like the one
provided by the XMI encoding of UML diagrams: 2) a customizable
logging facility, as granted by the most popular Web runtime
frameworks.

2. WEB MODELING LANGUAGE
WebML (Web Modeling Language) is a conceptual model for Web
application design [1]. It is an ingredient of a broader Web
development methodology, which is supported by a CASE tool,
named WebRatio [4]. In WebML, the specification of a Web
application consists of a data schema specified as an Entity-
Relationship (E/R) model or as a UML class diagram, and of a
hypertext schema describing the content of the site in terms of site
views, areas and pages. A site view is a specific hypertext, designed
for a particular class of users (Internet customers, administrators,
stakeholders and so on) and it may exhibit a hierarchical organization,
represented with the concept of area, defined as a recursive hypertext
sub-module. Site views and areas are composed of pages that display
elementary piece of contents. A content unit is a component for the
publication of information inside a page and it corresponding to a
parameterized query over the underlying E/R data model. WebML
offers six predefined units (data, index, multidata, scroller,
multichoice index, and hierarchical index), which show one ore more
database instances. To compute its content, a unit may require the
“cooperation” of other units, and the interaction of the user. Making
two units interact requires connecting them with a link, represented as
an oriented arc between a source and a destination unit. The aim of a
link is twofold: permitting navigation (intra or inter-page), and
enabling the parameter passing from the source to the destination unit.
Besides having a visual representation, WebML primitives are also
provided with an XML-based textual representation. This facilitates
the automatic generation of final applications by means of CASE tools,
as well as the automatic analysis of the application quality, as it will be
explained in the following sections.

3. THE EVALUATION FRAMEWORK
The proposed evaluation framework supports three kinds of analysis.

− Design Schema Analysis (DSA) verifies at design time
correctness and consistency of specifications, by finding
violations of quality attributes that decrease the effectiveness
of the conceptual schema, and thus of the resulting
application.

− Web Usage Analysis (WUA) operates on conceptual logs,
i.e., on semantically enriched log data collected at runtime,
and produces reports on content access and on the navigation
paths followed by users.

− Web Usage Mining (WUM) still operates on the conceptual
logs, by applying data mining techniques for discovering

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, NY USA.
ACM 1-58113-912-8/04/0005.

342

interesting user behaviors not foreseen by the application
designers, which can prompt for the revision or extension of
the application interfaces.

The main feature of the analysis performed over Web logs (both WUA
and WUM) is the exploitation of the so-called conceptual logs [2].
These are XML-based "enriched" Web logs that integrate the
conventional HTTP log data, collected by Web servers in ECLF
(Extended Common Log Format) format, and meta-data related to the
objects involved in the computation of pages. The latter data are
collected by a logging library plugged in the runtime framework, and
include information about: 1) the WebML content units composing the
accessed pages; 2) the data objects populating the content units inside
the accessed pages.

Figure 1. The evaluation framework architecture.

4. ARCHITECTURAL ISSUES
Figure 1 illustrates the architecture of the proposed quality evaluation
framework, which is based on three layers: Data Extraction, Analysis,
and Result Visualization. Two different warehouses are placed among
these layers:

− The Analysis Data Warehouse stores data needed for quality
analysis, represented in XML format. Such data are produced
by the Data Extraction layer that elaborates and merges the
application conceptual schema, the runtime logs and the
application data sources.

− The Result Warehouse stores the results produced by the
analysis in XML format. Such data are then used by the
graphical user interface for visualization.

Moreover, the Analysis Tasks repository stores the data analysis
procedures, encoded as queries over the mentioned data warehouses,
both in XSL and in XQuery. Using XML and XSL/XQuery for
expressing data analysis queries makes the quality evaluation
framework extensible. Adding a new quality indicator requires adding
the suitable warehouse queries for determining the value of the
indicator.

Figure 2 Example of results for navigation analysis.

5. THE QUALITY ASSESSMENT TOOL
The results of the quality analysis are displayed by the graphical tool
shown in Figure 2, which highlights the spotted problems directly over
the original conceptual model, so that the designer can immediately
grasp which part of the application needs intervention and why. For
example, Figure 2 shows the reconstruction of user navigation inferred
from the conceptual logs, by superimposing the actual navigation paths
over the hypertext schema. The analysis highlights an anomalous use
of the browser’s back button and suggests the addition of an explicit
navigation link in the conceptual design.

The full version of the paper [2] illustrates the result of applying the
quality evaluation method to a real-life Web application and comments
on the different quality checks that the method supports and on the
way in which corrective actions for improving the usability of the
application can be inferred from the results of the three different
classes of analysis described in Section 3.

6. REFERENCES
[1] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and

M. Matera. Designing Data-Intensive Web Applications.
Morgan Kaufmann, 2002.

[2] P. Fraternali, P. Lanzi, M. Matera and A. Maurino. Techniques
and tools for exploiting conceptual modeling in the evaluation of
web application quality. Technical Report,
http://www.elet.polimi.it/upload/fraterna/FLMM2004.pdf

[3] P. Fraternali, M.Matera and A. Maurino. Conceptual-Level Log
Analysis for the Evaluation of Web Application Quality. LA-
WEB 2003: 46-57, IEEE Press, 2003.

[4] WebRatio. http://www.webratio.com

343

