
XJ: Integration of XML Processing into JavaTM

Matthew Harren
Dept. Comp. Sci.

University of California
Berkeley, CA

matth@cs.berkeley.edu

Mukund Raghavachari
IBM Research

19 Skyline Drive
Hawthorne, NY

raghavac@us.ibm.com

Oded Shmueli
Dept. Comp. Sci.

Technion
Haifa, Israel

oshmu@cs.technion.ac.il

Michael Burke
IBM Research

19 Skyline Drive
Hawthorne, NY

mgburke@us.ibm.com

Vivek Sarkar
IBM Research

19 Skyline Drive
Hawthorne, NY

vsarkar@us.ibm.com

Rajesh Bordawekar
IBM Research

19 Skyline Drive
Hawthorne, NY

bordaw@us.ibm.com

ABSTRACT
The increased importance of XML as a universal data rep-
resentation format has led to several proposals for enabling
the development of applications that operate on XML data.
These proposals range from runtime API-based interfaces
to XML-based programming languages. The subject of this
paper is XJ, a research language that proposes novel mech-
anisms for the integration of XML as a first-class construct
into JavaTM. The design goals of XJ distinguish it from
past work on integrating XML support into programming
languages — specifically, the XJ design adheres to the XML
Schema and XPath standards, and supports in-place up-
dates of XML data thereby keeping with the imperative na-
ture of Java. We have also built a prototype compiler for
XJ, and our preliminary experimental results demonstrate
that the performance of XJ programs can approach that of
traditional low level API-based interfaces, while providing a
higher level of abstraction.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages, Design

Keywords
XML, Java, Data Integration

1. INTRODUCTION
XML [12] has emerged as the de facto standard for data

interchange. One reason for its popularity is that it defines
a standard mechanism for structuring data as ordered, la-
beled trees. The utility of XML as an application integration
mechanism is enhanced when interacting applications agree
on the structure and vocabulary of labels of the XML data
interchanged. This requirement has led to the development

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

of the XML Schema [9] standard — an XML Schema speci-
fies a set of XML documents whose vocabulary and structure
satisfy constraints in the XML Schema.

Despite the increased importance of XML, the available
facilities for processing XML in current programming lan-
guages are primitive. Programmers often use runtime APIs
such as DOM [10], which builds an in-memory tree from
an XML document, or SAX [8], where an XML document
parser raises events that are handled by an application.
None of the benefits associated with high-level program-
ming languages, such as static type checking of operations
on XML data are available to a programmer. The responsi-
bility of ensuring that operations on XML data respect the
XML Schema associated with it falls on the programmer.

The alternative approach to using standard interfaces to
process XML data is to embed support for XML within the
programming language. For example, a widely used XML-
based standard is XPath [11], a language for navigating and
extracting XML data. Support for XPath in the program-
ming language provides a natural, succinct and flexible con-
struct for accessing XML data. Extending current program-
ming languages with awareness of XML, XML Schema, and
XPath through a careful integration of the XML Schema
type system and XPath expression syntax can simplify pro-
gramming and enables useful services such as static type
checking and compiler optimizations.

The subject of this poster (and demonstration) is XJ,
a research language that integrates XML as a first-class
construct into Java. The design goals of XJ distinguish
it from other projects that integrate XML into program-
ming languages. The goal of introducing XML as a type
into an object-oriented imperative language is not new —
Xtatic [4], Xact [5] and other languages [?, 6, ?] have stud-
ied the integration of XML into C� and Java. What sets XJ
apart from these and other languages is its consistency with
XML standards such as XML Schema and XPath, and its
support for in-place updates of XML data, thereby keeping
with the imperative nature of languages like Java.

This poster will introduce XJ, describe issues that arose in
its design, and compare its abstractions with those of other
languages. We have built a prototype compiler and a run-
time system for XJ. The current output of the XJ compiler

340



1 import "po.xsd";
2 public class Discounter {
3 public void giveDiscount(){
4 purchaseOrder po =

(purchaseOrder)XMLItem.load("po.xml", null);
5

6 XML<item> bulkPurchases =
�po/item[quantity/text() > 50]�;

7 for (int i = 0; i < bulkPurchases.size(); i++) {
8 item current = bulkPurchases.get(i);
9 �current/USPrice/text()� *= 0.80; // Deduct 20%

10 }
11 XMLItem.serialize(po, "po.xml");
12 }
13 }

Figure 1: An XJ program that reduces the price of
certain items in a purchase order.

is standard Java code that accesses XML data using DOM.
We will demonstrate that the added flexibility of XJ over
APIs such as DOM come with minimal overhead in perfor-
mance. We also discuss optimizations that could further
improve the performance of XJ programs.

Brief Example We introduce the XJ language with the
sample program listed in Figure 1. The schema used in
this example (po.xsd) is that listed in the XML Schema
primer [9].

An import statement at the start of the program processes
XML element and type declarations from the specified XML
Schema file. The compiler treats the declarations in this
schema, such as purchaseOrder and item, as types in XJ.
Line 4 loads an XML document, ensures that it is valid with
respect to purchaseOrder, and stores a reference to the root
element in po.

Line 6 uses XPath notation to navigate the XML tree
and selects those item nodes for which more than 50 were
ordered. For convenience, the current XJ design uses the
backquote, “�”, to delimit XPath expressions. The back-
quote delimiter helps avoid ambiguity over uses of the “//”
token, which represents the start of a comment in Java, but
has a special meaning in XPath (it represents a descendant-
or-self axis traversal).
XML<τ>, where τ is generally a regular expression, is a

predefined keyword in XJ that denotes an ordered sequence
such that the types of the contents of the sequence satisfy
τ . In this particular example, XML<item∗>, denotes an or-
dered list of zero or more item elements. Each such ordered
sequence is also an instance of java.lang.List, and the
methods defined in this interface can be used to traverse
the sequence, for example, the get() method is used in Line
8 to access contents of the list.

Line 9 uses XPath notation to update the value of a
atomic-typed element. Finally, Line 11 invokes a procedure
to serialize the document back to an external file.

2. IMPLEMENTATION
We have built a prototype compiler for XJ that gener-

ates Java source from XJ source programs (the architecutre
of the XJ compiler is shown in Figure 2). The compiler is
implemented with Polyglot [7], which provides a framework
for parsing and typechecking Java source code, and imple-
menting extensions to Java. XML Schemas imported by XJ

XJ Source

XM L Schem as

PolyGlot

Eclipse XSD

Type
Checker

Codegen Java +
DOM

Figure 2: The structure of the XJ prototype com-
piler.

programs are parsed using the XML Schema Infoset Model
plugin for Eclipse [2].

The type checking of XJ programs relies on the XAEL
engine [3]. The inputs to XAEL are an XPath expression,
an XML Schema, and the type of the context node for the
XPath expression. XAEL uses abstract evaluation of the
XPath expression on the XML Schema to infer the least type
such that the result of evaluating the XPath expression on
any document conforming to the XML Schema would be an
instance of the least type.

Once an XJ program has passed static typechecking, the
XJ compiler emits Java code where the syntactic constructs
introduced by XJ are erased to appropriate calls to the XJ
runtime system. All references to XML types are erased
to the appropriate DOM type or List (if one cannot deter-
mine that the result will be a singleton). XPath accesses are
translated into calls into the runtime system, which invokes
Xalan [1] to evaluate XPath expressions on the provided
context node.

3. REFERENCES
[1] Apache Software Foundation. Xerces2 Java and Xalan

Java. http://xml.apache.org.

[2] Eclipse project. XML schema infoset model.
http://www.eclipse.org/xsd/.

[3] A. Fokoué. XAEL: XML abstract evaluation library.
Unpublished Manuscript.

[4] V. Gapeyev and B. C. Pierce. Regular object types. In
ECOOP, 2003.

[5] C. Kirkegaard, A. Møller, and M. I. Schwartzbach.
Static analysis of XML transformations in Java.
Technical Report RS-03-19, BRICS, May 2003.

[6] E. Meijer and W. Schulte. Unifying tables, objects,
and documents. http://research.microsoft.com/
∼emeijer/Papers/XS.pdf.

[7] N. Nystrom, M. R. Clarkson, and A. C. Myers.
Polyglot: An extensible compiler framework for Java.
LNCS 2622, pages 138–152, April 2003.

[8] Simple API for XML. http://www.saxproject.org.

[9] World Wide Web Consortium. XML Schema, Parts
0,1, and 2.

[10] World Wide Web Consortium. Document Object
Model Level 2 Core, November 2000.

[11] World Wide Web Consortium. XML Path Language
(XPath) 2.0, November 2003.

[12] World Wide Web Consortium (W3C). Extensible
Markup Language (XML) 1.0 (Second Edition),
October 2000.

341


