
Dynamic Search in Peer-to-Peer Networks

Hsinping Wang ,Tsungnan Lin, Chia Hung Chen, and Yennan Shen
Graduate Institute of Communication Engineering

National Taiwan University, Taipei, Taiwan
+886-2-23635251-536

{r91942041, tsungnan}@ntu.edu.tw

ABSTRACT
This work* specifically addresses the search issues in unstructured
peer-to-peer (P2P) systems that involve the design of an efficient
search algorithm, the proposed dynamic search, and the modeling
of P2P systems reflecting real measured P2P networks. Through
simulations, we will show dynamic search outperforms other
existing ones in terms of performance aspects.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Search Process.

General Terms: Algorithms, Performance, Design

Keywords: P2P, Search algorithm, Gnutella, Modeling

1. INTRODUCTION
One key challenging aspect in P2P systems is the design of
efficient search algorithms. It is especially important for
Gnutella-like unstructured P2P networks since they have
highly-connected power-law topologies that easily lead to
in-scalable operation. Thus, we propose a scalable search, which
dynamically decides the number of running walkers with respect to
peers’ local topology and search time state. It is able to temporally
control the extent of messages generated by the simulated
annealing mechanism, thus a scalable one. Moreover, we
quantitatively characterize, through simulations in dynamic P2P
environments, the performance of various existing algorithms. The
proposed dynamic search outperforms other algorithms in terms of
SE [1] in both the local and global search spaces.

2. DYNAMIC SEARCH
The design goal of our Dynamic Search algorithm is to optimize
the search performance. We hypothesize that the intrinsic nature of
search optimization methods in an unstructured P2P network is
similar to the problems of the combinatorial optimization methods.
Therefore, we take an approach similar to the mechanism called
simulated annealing, a popular optimization method, to construct
our dynamic search. The term simulated annealing derives from
the roughly analogous physical process of heating and then slowly
cooling a substance to obtain a strong crystalline structure, which
allows the system to move consistently towards lower energy
states, yet still jump out of local minima due to the probabilistic
acceptance of some upward moves during the first few iterations.

* This work is supported in part by NSC grant NSC92-2213-E-002-087.

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, NY USA.
ACM 1-58113-912-8/04/0005.

We specify our dynamic search by a forwarding probability model.
For each peer applying dynamic search, the probability function to
forward to its ith neighbor at search time t is

0 1() () (1) ()

()

n
i

Annealed_Flooding

u

p t p u t p u t p u t n

p u t n

= ⋅ − ⋅ − − − ⋅ −

+ ⋅ −

LL
1444444442444444443

 (1)

where n is the limit to aggressively explore the search space. The
probability p0 controls the extent the peer to query its neighbors
and probabilities p0, p1,…, and pn anneal the querying extent. To
guarantee that the number of query messages will not grow
exponentially, pu can be set to be 1/l, where l is the link degree of
the relayed node. In this case, only one query message will be
generated.

Dynamic search is hence a multi-stage search with a probability
model annealed to search time. It attempts to probabilistically
flood the local search space and temporally limits the exploration.
While the search is out of the local space (beyond n hops),
dynamic search will change to a limited search. The multi-stage
probability model can satisfy the goals to search aggressively in
the local, control the network impact in the global, and choose the
number of optimal query messages in a dynamic fashion.
Furthermore, by the dynamic search, peers can probabilistically
decide the number of query messages (walkers) according to their
linking status and the time state t within radius n, while random
walk can only use fixed number of walkers.

3. REALISTIC P2P MODELING
In order for strong evaluation environment, we have built a
simulator, with algorithms in question embedded, to model
possible aspects in file-sharing P2P systems: network topology,
peer cycle, and peer querying/sharing behavior. The significance of
this simulator comes from these modeled aspects that strongly
reflect the real measurement studies [4, 5, 6], and the dynamic
modeling of peer cycle, thus producing virtually realistic results.
For topology modeling, our simulator constructs a P2P network of
100,000 nodes and the link distribution follows the two-stage
power law, reported in [6]. The maximum link degree is 632 with
mean of 11.73 and standard deviation of 17.09.
The peer cycle is modeled as joining, querying, idling, leaving, and
joining again to form a cycle, which is similar to the one in [3].
The joining and leaving operations (include idling) are inferred and
then modeled by the uptime and session duration distributions
measured in [4, 5]. We use log-quadratic distributions suggested in
[5] to re-build the two distributions so that 1) half of the peers have
uptime percentage less than 10% and the best 20% of peers have
45% uptime or more, and 2) the median session duration time is 20
minutes. By the rebuilt distributions, we can generate a probability
model to decide when a peer should join or leave the network and
how long it should continually be online. The basic rule is that

332

Number of Walkers for Algorithms

0

5

10

15

20

25

30

1 2 3 4 5 6 7
Hop

N
um

be
r o

f W
al

ke
rs

Random Walk
Dynamic
Flooding
Modified BFS

nodes with higher link degrees are assigned to higher uptime
percentages and longer session durations, and vice versa. With
these conditions, we map a two-hour long dynamic join/leave
pattern for peers. On average, there are 10 peers joining or leaving
simultaneously. The average number of on-line nodes is 18,152
with maximum of 24,218 and minimum of 4,886.
We model peer querying as Poisson distribution with mean idle
time λ= 50 minutes—one query per 50 min. per peer, which is an
experiential value [3]. Thus, there are statistically 6 queries or
searches processing concurrently in the entire network. Totally, in
this 2-hour simulation, we generate 43,632 search queries.
For the object distribution, we assume there are 100 distinct
objects with replication ratio R = 1%; totally there are 100,000
objects in the network. The distribution of the 100,000 objects over
the network follows the characteristics reported in [4]. For the peer
query distribution of these 100 distinct objects, we model it as zipf
distribution with parameter a = 0.82 [2, 6]. Finally, our simulator’s
central clock is triggered per second, which measures a hop for
messaging passing.

4. PERFORMACE EVALUATION
Before presenting our simulation, we first introduce a unified
search evaluation metric, Search Efficiency [1], which measures
scalability, reliability, and responsiveness in a single shot:

Search Efficiency (SE) QueryHits SuccessRate
MsgPerNode HopsNum

×=
×

.

We compare four search algorithms (flooding, random walk,
modified-BFS [2], and dynamic search) by SE. The number of
walkers for random walk is chosen as 10. The fraction parameter
of modified-BFS is 0.2. Parameters in (1) are set as n = 2, p0 = 1.0,
p1 = 0.7, p2 = 0.3, and pu = 1/l, where l is the link degree of relayed
peer. With these specifications, the dynamic search will operate as
flooding at hop count h = 1, as modified-BFS with probability of
0.3 at h = 2, and as random walk for h≧3.
Simulation environments are entirely described in Section 3. In
brief, we perform a 2-hour simulation, issuing 43,632 searches for
each algorithm. The simulation results for SE with hop depths h =
1 to 7 are plotted in Figure 1.
We can observe in Figure 1 that SE of flooding is high compared
with random walk in the local space (h = 2) but decrease
dramatically in the global region. Modified-BFS sustains the high
efficiency from h = 3 to 4 but performs poorly in the long-term
space. The performance degradation of these two algorithms is due
to the huge number of redundant messages, as discussed in [2, 6].
Random walk, on the other hand, needs some “warm up” time to
explore the search space and the performance increase is delayed
to the long-term search space due to the limited number of random
walkers. In the long term, its SE is consistently high compared
with flooding and modified-BFS. As for the dynamic search, it
inherits the high performance of flooding in the local and the
consistent performance of random walk in the global, thus
performing outstanding performance within all hop depths.
Moreover, in Section 2, we claim that our dynamic search decides
the number of walkers each node forwards to the next-hop peers in
a “simulated annealing” style. We therefore show the analysis of
walker numbers on a hop-depth basis in Figure 2, in which we
make a metaphor relating the number of walkers with the
temperature of annealing systems.
For flooding, the apparent large number of walkers “overheats” the
search system (overwhelms it by messages) since it lacks the
cooling process essential for the optimization. For random walk,
the initial number of walkers is 10, but it imposes a hard limit on

the walker number as 1 when h�2, which corresponds to the lack
of chance to jump out of local minima, thus resulting in a too
“cool” state of annealing and this is why it “warms up” slowly. But
for our dynamic search, the number of walkers is 16.2 initially,
annealed to 7.5, and finally kept a constant of 1. In this way,
dynamic search aggressively explores the local, giving chance to
jump out the local minima, to return responsive query hits and
increase the success probability. In the global search space, it
moderately controls messages generation, applying the cooling
process, thus leading to consistent search performance.

Figure 1. Search Efficiency comparison for search algorithms

Figure 2. The average number of walkers each peer generates
at various hop-depths for algorithms

5. CONCLUSION
In this paper, we have demonstrated two major contributions: 1)
the design of dynamic search, which adopts the ideas of simulated
annealing to achieve good performance, and 2) a dynamic P2P
system modeling, which strongly reflects the real P2P
measurements, thus giving convincing results to support the
fineness of the dynamic search.

6. REFERENCES
[1] T. Lin, H. Wang, and J. Wang. Search Performance Analysis and

Robust Search Algorithm in Unstructured Peer-to-Peer Networks.
GP2PC, April 2004.

[2] D. Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer
Search Methods. WebDB, June 2003.

[3] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley.
Modeling Peer-Peer File Sharing Systems. INFOCOM, 2003.

[4] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study
of peer-to-peer file sharing systems. MMCN, January 2002.

[5] J. Chu, K. Labonte, and B. Levine. Availability and Locality
Measurements of Peer-to-Peer File Systems. SPIE, 2002.

[6] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. ICS, 2002.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7Hop

Se
ar

ch
 E

ffi
ci

en
cy

Search Algorithm Comparison Flooding
Modified BFS
RW
Dynamic

333

