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ABSTRACT 
This work* specifically addresses the search issues in unstructured 
peer-to-peer (P2P) systems that involve the design of an efficient 
search algorithm, the proposed dynamic search, and the modeling 
of P2P systems reflecting real measured P2P networks. Through 
simulations, we will show dynamic search outperforms other 
existing ones in terms of performance aspects. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Search Process. 

General Terms: Algorithms, Performance, Design 

Keywords: P2P, Search algorithm, Gnutella, Modeling 

1. INTRODUCTION 
One key challenging aspect in P2P systems is the design of 
efficient search algorithms. It is especially important for 
Gnutella-like unstructured P2P networks since they have 
highly-connected power-law topologies that easily lead to 
in-scalable operation. Thus, we propose a scalable search, which 
dynamically decides the number of running walkers with respect to 
peers’ local topology and search time state. It is able to temporally 
control the extent of messages generated by the simulated 
annealing mechanism, thus a scalable one. Moreover, we 
quantitatively characterize, through simulations in dynamic P2P 
environments, the performance of various existing algorithms. The 
proposed dynamic search outperforms other algorithms in terms of 
SE [1] in both the local and global search spaces. 

2. DYNAMIC SEARCH 
The design goal of our Dynamic Search algorithm is to optimize 
the search performance. We hypothesize that the intrinsic nature of 
search optimization methods in an unstructured P2P network is 
similar to the problems of the combinatorial optimization methods. 
Therefore, we take an approach similar to the mechanism called 
simulated annealing, a popular optimization method, to construct 
our dynamic search. The term simulated annealing derives from 
the roughly analogous physical process of heating and then slowly  
cooling a substance to obtain a strong crystalline structure, which 
allows the system to move consistently towards lower energy 
states, yet still jump out of local minima due to the probabilistic 
acceptance of some upward moves during the first few iterations. 
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We specify our dynamic search by a forwarding probability model. 
For each peer applying dynamic search, the probability function to 
forward to its ith neighbor at search time t is 
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where n is the limit to aggressively explore the search space. The 
probability p0 controls the extent the peer to query its neighbors 
and probabilities p0, p1,…, and pn anneal the querying extent. To 
guarantee that the number of query messages will not grow 
exponentially, pu can be set to be 1/l, where l is the link degree of 
the relayed node. In this case, only one query message will be 
generated.  

Dynamic search is hence a multi-stage search with a probability 
model annealed to search time. It attempts to probabilistically 
flood the local search space and temporally limits the exploration. 
While the search is out of the local space (beyond n hops), 
dynamic search will change to a limited search. The multi-stage 
probability model can satisfy the goals to search aggressively in 
the local, control the network impact in the global, and choose the 
number of optimal query messages in a dynamic fashion.  
Furthermore, by the dynamic search, peers can probabilistically 
decide the number of query messages (walkers) according to their 
linking status and the time state t within radius n, while random 
walk can only use fixed number of walkers. 

3. REALISTIC P2P MODELING 
In order for strong evaluation environment, we have built a 
simulator, with algorithms in question embedded, to model 
possible aspects in file-sharing P2P systems: network topology, 
peer cycle, and peer querying/sharing behavior. The significance of 
this simulator comes from these modeled aspects that strongly 
reflect the real measurement studies [4, 5, 6], and the dynamic 
modeling of peer cycle, thus producing virtually realistic results.  
For topology modeling, our simulator constructs a P2P network of 
100,000 nodes and the link distribution follows the two-stage 
power law, reported in [6]. The maximum link degree is 632 with 
mean of 11.73 and standard deviation of 17.09. 
The peer cycle is modeled as joining, querying, idling, leaving, and 
joining again to form a cycle, which is similar to the one in [3]. 
The joining and leaving operations (include idling) are inferred and 
then modeled by the uptime and session duration distributions 
measured in [4, 5]. We use log-quadratic distributions suggested in 
[5] to re-build the two distributions so that 1) half of the peers have 
uptime percentage less than 10% and the best 20% of peers have 
45% uptime or more, and 2) the median session duration time is 20 
minutes. By the rebuilt distributions, we can generate a probability 
model to decide when a peer should join or leave the network and 
how long it should continually be online. The basic rule is that 
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nodes with higher link degrees are assigned to higher uptime 
percentages and longer session durations, and vice versa. With 
these conditions, we map a two-hour long dynamic join/leave 
pattern for peers. On average, there are 10 peers joining or leaving 
simultaneously. The average number of on-line nodes is 18,152 
with maximum of 24,218 and minimum of 4,886. 
We model peer querying as Poisson distribution with mean idle 
time λ= 50 minutes—one query per 50 min. per peer, which is an 
experiential value [3]. Thus, there are statistically 6 queries or 
searches processing concurrently in the entire network. Totally, in 
this 2-hour simulation, we generate 43,632 search queries. 
For the object distribution, we assume there are 100 distinct 
objects with replication ratio R = 1%; totally there are 100,000 
objects in the network. The distribution of the 100,000 objects over 
the network follows the characteristics reported in [4]. For the peer 
query distribution of these 100 distinct objects, we model it as zipf 
distribution with parameter a = 0.82 [2, 6]. Finally, our simulator’s 
central clock is triggered per second, which measures a hop for 
messaging passing. 

4. PERFORMACE EVALUATION 
Before presenting our simulation, we first introduce a unified 
search evaluation metric, Search Efficiency [1], which measures 
scalability, reliability, and responsiveness in a single shot: 

Search Efficiency (SE) QueryHits SuccessRate
MsgPerNode HopsNum

×=
×

. 

We compare four search algorithms (flooding, random walk, 
modified-BFS [2], and dynamic search) by SE. The number of 
walkers for random walk is chosen as 10. The fraction parameter 
of modified-BFS is 0.2. Parameters in (1) are set as n = 2, p0 = 1.0, 
p1 = 0.7, p2 = 0.3, and pu = 1/l, where l is the link degree of relayed 
peer. With these specifications, the dynamic search will operate as 
flooding at hop count h = 1, as modified-BFS with probability of 
0.3 at h = 2, and as random walk for h≧3. 
Simulation environments are entirely described in Section 3. In 
brief, we perform a 2-hour simulation, issuing 43,632 searches for 
each algorithm. The simulation results for SE with hop depths h = 
1 to 7 are plotted in Figure 1.  
We can observe in Figure 1 that SE of flooding is high compared 
with random walk in the local space (h = 2) but decrease 
dramatically in the global region. Modified-BFS sustains the high 
efficiency from h = 3 to 4 but performs poorly in the long-term 
space. The performance degradation of these two algorithms is due 
to the huge number of redundant messages, as discussed in [2, 6]. 
Random walk, on the other hand, needs some “warm up” time to 
explore the search space and the performance increase is delayed 
to the long-term search space due to the limited number of random 
walkers. In the long term, its SE is consistently high compared 
with flooding and modified-BFS. As for the dynamic search, it 
inherits the high performance of flooding in the local and the 
consistent performance of random walk in the global, thus 
performing outstanding performance within all hop depths. 
Moreover, in Section 2, we claim that our dynamic search decides 
the number of walkers each node forwards to the next-hop peers in 
a “simulated annealing” style. We therefore show the analysis of 
walker numbers on a hop-depth basis in Figure 2, in which we 
make a metaphor relating the number of walkers with the 
temperature of annealing systems. 
For flooding, the apparent large number of walkers “overheats” the 
search system (overwhelms it by messages) since it lacks the 
cooling process essential for the optimization. For random walk, 
the initial number of walkers is 10, but it imposes a hard limit on 

the walker number as 1 when h�2, which corresponds to the lack 
of chance to jump out of local minima, thus resulting in a too 
“cool” state of annealing and this is why it “warms up” slowly. But 
for our dynamic search, the number of walkers is 16.2 initially, 
annealed to 7.5, and finally kept a constant of 1. In this way, 
dynamic search aggressively explores the local, giving chance to 
jump out the local minima, to return responsive query hits and 
increase the success probability. In the global search space, it 
moderately controls messages generation, applying the cooling 
process, thus leading to consistent search performance. 

 
Figure 1. Search Efficiency comparison for search algorithms  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The average number of walkers each peer generates 
at various hop-depths for algorithms 

5. CONCLUSION 
In this paper, we have demonstrated two major contributions: 1) 
the design of dynamic search, which adopts the ideas of simulated 
annealing to achieve good performance, and 2) a dynamic P2P 
system modeling, which strongly reflects the real P2P 
measurements, thus giving convincing results to support the 
fineness of the dynamic search. 
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